Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 086102    DOI: 10.1088/1674-1056/21/8/086102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Amorphous-crystalline dual-layer structures resulting from metastable liquid phase separation in (Fe50Co25B15Si10)80Cu20 melt-spun ribbons

Cao Chong-De (曹崇德)a, Gong Su-Lian (弓素莲)a, Guo Jin-Bo (郭晋波)a, Song Rui-Bo (宋瑞波)a, Sun Zhan-Bo (孙占波)b, Yang Sen (杨森)b, Wang Wei-Min (王伟民 )c
a Department of Applied Physics, Northwestern Polytechnic University, Xi'an 710072, China;
b School of Science, Xi'an Jiaotong University, Xi'an 710049, China;
c Scool of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
Abstract  (Fe50Co25B15Si10)80Cu20 ribbons are prepared by the single-roller melt-spinning method. A dual-layer structure consisting of a (Fe, Co)-rich amorphous phase and a Cu-rich crystalline phase forms due to metastable liquid phase separation before solidification. The magnetic hysteresis loops of the as-quenched and annealed samples are measured at room temperature. It is indicated that the coercivity of the ribbon is almost zero in as-quenched state. The crystallization leads to the increase of coercivity and decrease of saturation magnetization.
Keywords:  amorphous alloy      rapid solidification      liquid phase separation      magnetic property  
Received:  28 December 2011      Revised:  05 March 2012      Accepted manuscript online: 
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  64.75.Op (Phase separation and segregation in alloying)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  81.70.Pg (Thermal analysis, differential thermal analysis (DTA), differential thermogravimetric analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51171152 and 50871088), the Foundation for Fundamental Research of Northwestern Polytechnic University, China (Grant No. JC201268), and the Fund of the State Key Laboratory of Solidification Processing, China (Grant No. SKLSP201202).
Corresponding Authors:  Cao Chong-De     E-mail:  caocd@nwpu.edu.cn

Cite this article: 

Cao Chong-De (曹崇德), Gong Su-Lian (弓素莲), Guo Jin-Bo (郭晋波), Song Rui-Bo (宋瑞波), Sun Zhan-Bo (孙占波), Yang Sen (杨森), Wang Wei-Min (王伟民 ) Amorphous-crystalline dual-layer structures resulting from metastable liquid phase separation in (Fe50Co25B15Si10)80Cu20 melt-spun ribbons 2012 Chin. Phys. B 21 086102

[1] Conner R D, Dandliker R B and Johnson W L 1998 Acta Mater. 46 6089
[2] Szuecs F, Kim C P and Johnson W L 2001 Acta Mater. 49 1507
[3] Jiang H C, Zhang W L and Zhang W X 2008 Chin. Phys. Lett. 25 1435
[4] Kong L H, Chen R R and Song T T J. Mag. Mag. Mater. 323 3285
[5] Kundig A A, Ohnuma M, Ping D H, Ohkubo T and Hono K 2004 Acta Mater. 52 2441
[6] Nagase T, Yokoyama A and Umakoshi Y 2010 J. Alloys Compd. 494 295
[7] Munitz A and Abbaschian R 1987 Metall. Trans. B 18 565
[8] Cao C D 2006 Chin. Phys. 15 872
[9] Cao C D, Görler G P, Herlach D M and Wei B 2002 Mater. Sci. Eng. A 325 503
[10] Xu J F and Wei B B 2005 Acta Phys. Sin. 54 3444 (in Chinese)
[11] Kim D I and Abbaschian R 2000 J. Phase Equilibria 21 25
[12] Bamberger M, Munitz A, Kaufman L and Abbaschian R 2002 Calphad. 26 375
[13] Cao C D and Görler G P 2005 Chin. Phys. Lett. 22 482
[14] Cao X G, Guo Z C, Che X Z, Liu P and Yin B 1997 Int. J. Iron Steel Res. 4 27
[15] Yamauchi I, Irie T and Sakaguchi H 2005 J. Alloys Compd. 403 211
[16] Takeshi N and Yukichi U 2010 Intermetallics 18 2136
[17] Lesz S, Nowosielski R, Zajdel A, Kostrubiec B and Stoklosa Z 2007 Archives of Materials Science and Engineering 28 91
[18] Szewieczek D, Tyrlik-Held J and Lesz S 2007 Journal of Achievements in Materials and Manufacturing Engineering 24 87
[19] Inoue A, Makino A and Mizushima T 2000 J. Mag. Mag. Mater. 215 246
[20] Schwarz R B, Shen T D, Harms U and Lillo T 2004 J. Mag. Mag. Mater. 283 223
[21] Myron S, Lausanne C H, Thomas T and Edgar Mclaude-alain D 2005 U.S. Patent 6 875 522 B2
[22] Wang G H, Pan H, Ke F J, Xia M F and Bai Y L 2008 Chin. Phys. B 17 259
[23] Yosbizalwa Y, Oguma S and Yamauchi K 1988 J. Appl. Phys. 64 6044
[24] Wang W H, Pan M X and Zhao D Q 2004 J. Phys.: Condens. Matter 16 3719
[1] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[2] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[3] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[4] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[5] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[6] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[7] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[8] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[9] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[10] Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study
Han-Xing Zhang(张汉星), Chao-Hao Hu(胡朝浩), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2018, 27(8): 083601.
[11] Ab initio molecular dynamics simulations of nano-crystallization of Fe-based amorphous alloys with early transition metals
Yao-Cen Wang(汪姚岑), Yan Zhang(张岩), Yoshiyuki Kawazoe, Jun Shen(沈军), Chong-De Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116401.
[12] Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy
Xiaojun Bai(白晓军), Yaocen Wang(汪姚岑), Chongde Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116402.
[13] Study of structural and magnetic properties of Fe80P9B11 amorphous alloy by ab initio molecular dynamic simulation
Li Zhu(朱力), Yin-Gang Wang(王寅岗), Cheng-Cheng Cao(曹成成), Yang Meng(孟洋). Chin. Phys. B, 2017, 26(6): 067101.
[14] The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds
Xin-Qi Zheng(郑新奇), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(2): 027501.
[15] Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation
Chao Li(李超), Jun-Jie Sun(孙俊杰), Duo Chen(陈铎), Guang-Bing Han(韩广兵), Shu-Yun Yu(于淑云), Shi-Shou Kang(康仕寿), Liang-Mo Mei(梅良模). Chin. Phys. B, 2016, 25(8): 088201.
No Suggested Reading articles found!