CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The properties of GaMnN lms grown by metalorganic chemical vapour deposition using Raman spectroscopy |
Xing Hai-Ying(邢海英)a)b), Niu Ping-Juan(牛萍娟)b)c)†, and Xie Yu-Xin(谢玉芯)a) |
a School of Electronics and Information Engineering Tianjin Polytechnic University, Tianjin 300387, China; b Engineering Research Center of High Power Solid State Lighting Application System, Tianjin 300387, China; c School of Electrical Engineering & Automation Tianjin Polytechnic University, Tianjin 300387, China |
|
|
Abstract An investigation of room-temperature Raman scattering is carried out on ferromagnetic semiconductor GaMnN films grown by metalorganic chemical vapour deposition with different Mn content values. New bands around 300 and 669 cm-1, that are not observed in undoped GaN, are found. They are assigned to disorder-activated mode and local vibration mode (LVM), respectively. After annealing, the intensity ratio between the LVM and E2(high) mode, i.e., ILVM=IE2(high), increases. The LO phonon-plasmon coupled (LOPC) mode is found in GaMnN, and the frequency of the LOPC mode of GaMnN shifting toward higher side is observed with the increase in the Mn doping in GaN. The ferromagnetic character and the carrier density of our GaMnN sample are discussed.
|
Received: 13 November 2011
Revised: 01 January 2012
Accepted manuscript online:
|
PACS:
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50602018), the Natural Science Foundation of Guangdong Province, China (Grant No. 06025083), the Research Project of Science and Technology of Guangdong Province, China (Grant No. 2006A10802001), the Key Research Project of Science and Technology of Guangzhou, China (Grant No. 2005Z1-D0071), and the Crucial Field and Key Breakthrough Project of Guangdong Province and Hongkong, China (Grant No. 207A010501008). |
Corresponding Authors:
Niu Ping-Juan
E-mail: pjniu@hotmail.com
|
Cite this article:
Xing Hai-Ying(邢海英), Niu Ping-Juan(牛萍娟), and Xie Yu-Xin(谢玉芯) The properties of GaMnN lms grown by metalorganic chemical vapour deposition using Raman spectroscopy 2012 Chin. Phys. B 21 077801
|
[1] |
Vaudo R P, Goepfert I K, Moustakas T D, Geyea D M, Frey T J and Meehan K 1996 J. Appl. Phys. 79 2779
|
[2] |
Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Mat-sushita T, Kiyoku H and Sugimoto Y 1996 Jpn. J. Appl. Phys. 235 217
|
[3] |
Akasaki I, Sota S, Sakai H, Tanaka T, Koike M and Amano H 1996 Electron. Lett. 32 1105
|
[4] |
Sonoda S, Shimizu S, Sasaki T and Yamamoto Y 2002 J. Cryst. Growth 237 1358
|
[5] |
Theodoropoulou N, Hebard A F, Overberg M E, Abernathy C R, Pearton S J and Wilson R G 2001 Appl. Phys. Lett. 78 3475
|
[6] |
Thaler G T, Overberg M E, Gila B and Frazier R 2002 Appl. Phys. Lett. 80 3964
|
[7] |
Kane M H, Asghar A, Vestal C R, Strassburg M, Senawiratne J, Zhang Z J, Dietz N, Summers C J and Ferguson I T 2005 Semicond. Sci. Technol. 20 L5
|
[8] |
Song S F, Chen W D, Xu Z J and Xu X R 2007 Acta Phys. Sin. 56 1621 (in Chinese)
|
[9] |
Wang R M, Chen G D and Zhu Y Z 2006 Acta Phys. Sin. 55 0914 (in Chinese)
|
[10] |
Chen Y M, Wang G Z and Han X H 2005 Chin. J. Chem. Phys. 4 465
|
[11] |
Chen D J, Shen B and Zhang K X 2003 Acta Phys. Sin. 52 1788 (in Chinese)
|
[12] |
Gebicki W, Strzeszewski J, Kamler G, Szyszko T and Podsiadlo S 2000 Appl. Phys. Lett. 76 3870
|
[13] |
Zajac M, Doradzinski R, Gosk J, Szczytko J, Lefeld-Sosnowska M, Kaminska M, Twardowski A, Palczewska M, Grzanka E and Gebicki W 2001 Appl. Phys. Lett. 78 1276
|
[14] |
Harima H 2004 J. Phys.: Condens. Matter 16 55653
|
[15] |
Hashimoto M, Zhou Y K, Tampo H, Kanamura M and Asahi H 2003 J. Cryst. Growth 252 499
|
[16] |
Yu Y Y, Zhang R, Xiu X Q, Xie Z L, Yu H Q, Shi Y, Shen B, Gu S L and Zhen Y D 2004 J. Crust. Growth 269 270
|
[17] |
Xing H Y, Fan G H, Yang X L and Zhang G Y 2010 Acta Phys. Sin. 59 0504 (in Chinese)
|
[18] |
Limmer W, Ritter W, Sauer R, Mensching B, Liu C and Rauschenbach B. 1998 Appl. Phys. Lett. 72 2589
|
[19] |
Chen Z T, Su Y Y, Yang Z J, Zhang Y and Zhang G Y 2006 Chin. Phys. Lett. 23 1286
|
[20] |
Irmer G, Toporov V V and Bairamov B H 1983 Phys. Stat. Sol. (b) 119 595
|
[21] |
Kozawa T, Kachi T, Kano H, Taga Y and Hashimoto M 1994 J. Appl. Phys. 75 1098
|
[22] |
Perlin P, Camassel J, Knap W, Taliercio T, Chervin J C, Suski T, Grzegory I and Porowski S 1995 Appl. Phys. Lett. 67 2524
|
[23] |
Asghar M, Hussain I and Saleemi F 2006 Mater. Sci. Eng. B 133 102
|
[24] |
Li Z F and Lu W 2003 J. Infrared Millim. Waves 22 8
|
[25] |
Cheng X K, Wang W X and Zou J M 2001 Chin. J. Quant. Electron. 18 548 (in Chinese)
|
[26] |
Chen P P, Makino H, Kim J J and Yao T 2003 J. Cryst. Growth 251 331
|
[27] |
Islam M R, Chen N F and Yamada M 2006 Mater. Sci. Eng. B 9 184
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|