Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 076401    DOI: 10.1088/1674-1056/21/7/076401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma

Li Jun-Qiang(李俊强)a), Mei Zeng-Xia(梅增霞) a)†, Ye Da-Qian(叶大千)a), Hou Yao-Nan(侯尧楠)a), Liu Yao-Ping(刘尧平) a), A. Yu. Kuznetsovb), and Du Xiao-Long(杜小龙) a)‡
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo, Norway
Abstract  The role of temperature on the oxidation dynamics of Cu2O on ZnO (0001) was investigated during the oxidation of Cu (111)/ZnO (0001) by using the oxygen plasma as oxidant. A transition from single crystalline Cu2O (111) orientation to micro-zone phase separation with multiple orientations was revealed when the oxidation temperature increased from 300 ℃ to higher. The experimental results clearly showed the effect of oxidation temperature with the assistance of oxygen plasma on changing the morphology of Cu (111) film and enhancing the lateral nucleation and migration abilities of cuprous oxides. A vertical top-down oxidation mode and a lateral migration model were proposed to explain the different nucleation and growth dynamics of the temperature-dependent oxidation process in the oxidation of Cu (111)/ZnO (0001).
Keywords:  Cu2O      oxidation      plasma      molecular beam epitaxy  
Received:  14 February 2012      Revised:  09 March 2012      Accepted manuscript online: 
PACS:  64.75.Lm (Phase separation and segregation in oxidation)  
  68.55.-a (Thin film structure and morphology)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Project supported by the Ministry of Science and Technology of China (Grant Nos. 2011CB302002, 2009CB929400 and 2009AA033101), the National Natural Science Foundation of China (Grant Nos. 11174348 and 61076007), the Chinese Academy of Sciences, and the National Synchrotron Radiation Laboratory in the University of Science and Technology of China.
Corresponding Authors:  Mei Zeng-Xia, Du Xiao-Long     E-mail:  zxmei@aphy.iphy.ac.cn;xldu@aphy.iphy.ac.cn

Cite this article: 

Li Jun-Qiang(李俊强), Mei Zeng-Xia(梅增霞), Ye Da-Qian(叶大千), Hou Yao-Nan(侯尧楠), Liu Yao-Ping(刘尧平), A. Yu. Kuznetsov, and Du Xiao-Long(杜小龙) Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma 2012 Chin. Phys. B 21 076401

[1] Loferski J J 1956 J. Appl. Phys. 27 777
[2] Wadia C, Alivisatos A P and Kammen D M 2009 Environ. Sci. Technol. 43 2072
[3] Mittiga A, Salza E, Sarto F, Tucci M and Vasanthi R 2006 Appl. Phys. Lett. 88 163502
[4] Cui J and Gibson U J 2010 J. Phys. Chem. C 114 6408
[5] Musselman K P, Wisnet A, Iza D C, Hesse H C, Scheu C, MacManus-Driscoll J L and Schmidt-Mende L 2010 Adv. Mater. 22 E254
[6] Izaki M, Shinagawa T, Mizuno K T, Ida Y, Inaba M and Tasaka A 2007 J. Phys. D: Appl. Phys. 4 3326
[7] Hsueh T J, Hsu C L, Chang S J, Guo P W, Hsiehc J H and Chen I C 2007 Scripta Materialia 57 53
[8] Wong L M, Chiam S Y, Huang J Q, Wang S J, Pan J S and Chim W K 2010 J. Appl. Phys. 108 033702
[9] Jeong S H and Aydil E S 2009 J. Crys. Growth 311 4188
[10] Jeong S H and Aydil E S 2010 J. Vac. Sci. Technol. A 28 1338
[11] Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Paul G K and Sakurai T 2006 Solar Energy 80 715
[12] Chou S M, Hon M H, Leu I C and Lee Y H 2008 J. Electrochem. Soc. 155 H923
[13] Ishizuka S, Suzuki K, Okamoto Y, Yanagita M, Sakurai T, Akimoto K, Fujiwara N, Kobayashi H, Matsubara K and Niki S 2004 Phys. Stat. Sol. (c) 1 1067
[14] Minami T, Nishi Y, Miyata T and Nomoto J 2011 Appl. Phys. Express 4 062301
[15] Figueiredo V, Elangovan E, Goncalves G, Barquinha P, Pereira L, Franco N, Alves E, Martins R and Fortunato E 2008 Appl. Surf. Sci. 254 3949
[16] Soon A, Todorova M, Delley B and Stampfl C 2007 Surf. Sci. 601 5809
[17] Wiame F, Maurice V and Marcus P 2007 Surf. Sci. 601 1193
[18] Ozawa K, Oba Y and Edamoto K 2009 Surf. Sci. 603 2163
[19] Matsumoto T, A Bennett R, Stone P, Yamada T, Domen K and Bowker M 2001 Surf. Sci. 471 225
[20] Luo L, Kang Y, Liu Z, Yang J C and Zhou G 2011 Phys. Rev. B 83 155418
[21] Lundgren E, Gustafson J, Mikkelsen A, Andersen J N, Stierle A, Dosch H, Todorova M, Rogal J, Reuter K and Scheffler M 2004 Phys. Rev. Lett. 92 046101
[22] Eastman J A, Fuoss P H, Rehn L E, Baldo P M, Zhou G W, Fong D D and Thompson L J 2005 Appl. Phys. Lett. 87 051941
[23] Yuan H T, Liu Y Z, Du X L, Zeng Z Q, Mei Z X, Wan Y, Jia J F, Xue Q K and Zhang Z 2007 Chin. Phys. Lett. 24 2408
[24] Kato H, Miyamoto K, Sano M and Yao T 2004 Appl. Phys. Lett. 84 4562
[25] Li J and Mayer J W 1992 Mater. Chem. Phys. 32 l
[26] Lyubinetsky I, Thevuthasan S, McCready D E and Baer D R 2003 J. Appl. Phys. 94 7926
[27] Balamurugan B, Mehta B R and Shivaprasad S M 2001 Appl. Phys. Lett. 79 3176
[28] Raebiger H, Lany S and Zunger A 2007 Phys. Rev. B 76 045209
[29] Scanlon D O, Morgan B J, Watson G W and Walsh A 2009 Phys. Rev. Lett. 103 096405
[30] Wang W, Wu D, Zhang Q, Wang L and Tao M 2010 J. Appl. Phys. 107 123717
[31] Han X, Han K and Tao M 2010 Thin Solid Films 518 5363
[32] Guo Y, Liu Y P, Li J Q, Zhang S L, Mei Z X and Du X L 2010 Chin. Phys. Lett. 27 067203
[33] Peng T, Shen K, Wu H, Hu C and Liu C 2010 J. Phys. D: Appl. Phys. 43 315101
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[4] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[5] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[6] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[7] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[8] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[12] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[13] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[14] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[15] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
No Suggested Reading articles found!