Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070308    DOI: 10.1088/1674-1056/21/7/070308
GENERAL Prev   Next  

Influence of pumping laser bandwidth on the quantum fluctuation chracteristic of non-degenerate optical parametric amplifier

Zhao Chao-Ying(赵超樱), Ye Xing-Zhen(叶兴珍), Yang Cheng-Feng(杨成峰), and Chen Li-Ya(陈丽娅)
The College of Science, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  Usually the quantum fluctuation characteristic of the non-degenerate optical parametric amplifier is analysed under the assumption of monochromatic pumping. However, in experiments, the driving beam with finite bandwidth is used to obtain the non-degenerate signal and idler beam amplifications. On account of that, we derive an analytical solution for the non-degenerate optical parametric amplification system with finite bandwidth laser pumping, and evaluate the associated quantum fluctuation. Finally, the application of the V1 criterion to the bipartite entanglement is discussed.
Keywords:  pumping laser bandwidth      squeezing      entanglement  
Received:  24 November 2011      Revised:  26 December 2011      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Corresponding Authors:  Zhao Chao-Ying     E-mail:  zchy49@sohu.com

Cite this article: 

Zhao Chao-Ying(赵超樱), Ye Xing-Zhen(叶兴珍), Yang Cheng-Feng(杨成峰), and Chen Li-Ya(陈丽娅) Influence of pumping laser bandwidth on the quantum fluctuation chracteristic of non-degenerate optical parametric amplifier 2012 Chin. Phys. B 21 070308

[1] Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
[2] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[3] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D and Peng K C 2002 Phys. Rev. Lett. 88 047904
[4] Zhang J, Xie C D and Peng K C 2003 Europhys. Lett. 61 579
[5] Hirano T, Kotani K, Ishibashi T, Okude S and Kuwamoto T 2005 Opt. Lett. 30 1722
[6] Takeno Y, Yukawa M, Yonezawa H and Furusawa A 2007 Opt. Express 15 4321
[7] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K and Schnabel R 2008 Phys. Rev. Lett. 100 033602
[8] Kim C and Kumar P 1994 Phys. Rev. Lett. 73 1605
[9] Werner M J, Raymer M G, Beck M and Drummond P D 1995 Phys. Rev. A 52 4202
[10] Yu C X, Haus H A and Ippen E P 2001 Opt. Lett. 26 669
[11] Wenger J, Tualle-Brouri R and Grangier P 2004 Opt. Lett. 29 1267
[12] Eto Y, Tajima T, Zhang Y and Hirano T 2007 Opt. Lett. 32 1698
[13] Zhao C Y and Tan W H 2006 J. Mod. Opt. 53 1965
[14] Zhao C Y and Tan W H 2006 J.Opt. Soc. Am. B 23 2174
[15] Zhao C Y and Tan W H 2007 J. Mod. Opt. 54 97
[16] Zhao C Y and Tan W H 2007 Chin. Phys. 16 1
[17] Zhao C Y and Tan W H 2009 Chin. Phys. B 18 4143
[18] Zhao C Y and Tan W H 2010 Chin. Phys. B 19 110312
[19] Zhao C Y and Tan W H 2011 Chin. Phys. B 20 010305
[20] Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520
[21] Reid M D and Drummond P D 1989 Phys. Rev. A 40 4493
[22] Kinsler P and Drummond P D 1991 Phys. Rev. A 43 6194
[23] Walls D F and Milburn G J 1994 Quantum Optics (2nd edn.) (New York: Springer)
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[12] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[13] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[14] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[15] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
No Suggested Reading articles found!