Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 068101    DOI: 10.1088/1674-1056/21/6/068101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

ZnO nanorod arrays with tunable size and field emission properties on an ITO substrate achieved by an electrodeposition method

Gong Jiang-Feng(巩江峰)a)b), Dou Zhao-Ming(窦召明)a), Wang Zhi-Qiang(王志强) b), Zhang Bo(张博)a)b), Zhu Wei-Hua(朱卫华)a), Zhang Kai-Xiao(张开骁) a), Liu Ming-Yi(刘明熠)a), Zhu Hao(朱浩)c), and Zhou Jian-Feng(周剑锋)c)
a. Department of Physics, Hohai University, Nanjing 210098, China;
b. National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
c. College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Abstract  In the present work, vertically aligned ZnO nanorod arrays with tunable size are successfully synthesized on nonseeded ITO glass substrates by a simple electrodeposition method. The effect of growth conditions on the phase, morphology, and orientation of the products are studied in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It is observed that the as-prepared nanostructures exhibit a preferred orientation along c axis, and the size and density of the ZnO nanorod can be controlled by changing the concentration of ZnCl2. Field emission properties of the as-synthesized samples with different diameters are also studied, and the results show that the nanorod arrays with a smaller diameter and appropriate rod density exhibit better emission properties. The ZnO nanorod arrays show a potential application in field emitters.
Keywords:  ZnO nanorod      microstructure      electrodeposition      field emission properties  
Received:  20 November 2011      Revised:  05 December 2011      Accepted manuscript online: 
PACS:  81.07.Bc (Nanocrystalline materials)  
  81.15.Pq (Electrodeposition, electroplating)  
  79.70.+q (Field emission, ionization, evaporation, and desorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004047), the China Postdoctoral Sustentation Fund (Grant No. 200904501062), Jiangsu Provincial Postdoctoral Sustentation Fund, China (Grant No. 0901001B), and the Fundamental Research Fund for Central Universities (Grant Nos. 2010B09514 and 2010B29014).
Corresponding Authors:  Gong Jiang-Feng     E-mail:  jfgong@hhu.edu.cn

Cite this article: 

Gong Jiang-Feng(巩江峰), Dou Zhao-Ming(窦召明), Wang Zhi-Qiang(王志强), Zhang Bo(张博), Zhu Wei-Hua(朱卫华), Zhang Kai-Xiao(张开骁), Liu Ming-Yi(刘明熠), Zhu Hao(朱浩), and Zhou Jian-Feng(周剑锋) ZnO nanorod arrays with tunable size and field emission properties on an ITO substrate achieved by an electrodeposition method 2012 Chin. Phys. B 21 068101

[1] Chen Y, Bagnall D and Yao T 2000 Mater. Sci. Eng. B 75 190
[2] Cui Y, Wei Q, Park H K and Lieber C M 2001 Science 293 1289
[3] Negita K, Yamaguchi T and Tsuchie A 2003 Appl. Phys. Lett. 82 2844
[4] Zayer N K, Greef R and Rogers K 1999 Thin Solid Films 352 179
[5] Wang J, Gudiksen M S and Duan X 2001 Science 293 1455
[6] Ismail B, Abaab M A and Rezig B 2001 Thin Solid Films 383 92
[7] Vayssieres L, Keis K, Hagfeldt A and Lindquist S E 2001 Chem. Mater. 13 4395
[8] Lee C J, Lee T J, Lu S C, Zhang Y, Ruh H and Lee H J 2002 Appl. Phys. Lett. 81 3648
[9] Nakanishi Y, Miyake A, Kominami H, Aoki T, Hatanaka Y and Shimaoka G 1999 Appl. Surf. Sci. 142 233
[10] Bao J M, Zimmler M A, Capasso F, Wang X and Ren Z F 2006 Nano. Lett. 6 1719
[11] Lin C F, Lin H, Li J B and Li X 2008 J. Alloy. Compd. 462 175
[12] Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H and Lee H J 2002 Appl. Phys. Lett. 81 3648
[13] Sun Y, Fuge G M and Ashfold M N R 2004 Chem. Phys. Lett. 396 21
[14] Gao X P, Zheng Z F, Zhu H Y, Pan G L, Wu F and Song D Y 2004 Chem. Comm. 12 1428
[15] Li Y B, Bando Y and Golberg D 2004 Appl. Phys. Lett. 84 3603
[16] Bonard J M, Mirko C, Ralph K, Olivier N and Nicolas W 2002 Carbon 40 1715
[17] Pradhan D, Kumar M, Ando Y and Leung K T 2008 J. Phys. Chem. C 112 7093
[18] Wang Z L and Song J H 2006 Science 312 242
[19] Yi L X, Xu Z and Hou Y B 2001 Chin. Sci. Bull. 46 1223
[20] Kong X H, Sun X M, Li X L and Li Y D 2003 Mater. Chem. Phys. 82 997
[21] Zhang Y, Russo R E and Mao S S 2005 Appl. Phys. Lett. 87 133115
[22] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Web E and Yang P D 2001 Science 292 1897
[23] Gong J F, Dou Z M, Ding Q P, Xu Y and Zhu W H 2010 J. Nanomater. 10 7406289
[24] Song F Q, Zhang L, Han M, Huang H B, Li F, Ge J, Wan J G and Wang G H 2005 J. Phys. B: Conden. Matter 366 200
[25] Strbac S and Adzic R R 1996 Electrochem. Acta 41 2903
[26] Jiang S P, Cui C Q and Tseung A C C 1991 J. Electrochem. Soc. 138 3599
[27] Frolov V D, Karabutov A V, Pimenov S M, Konov V I and Ageev V P 2001 Diamond Relat. Mater. 10 1719
[28] Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H and Lee H J 2002 Appl. Phys. Lett. 81 648
[29] Minami T, Miyata T and Yamamoto T 1998 Surf. Coat. Technol. 108 583
[30] Cui J B, Daghlian C P, Gibson U J, Pusche R and Ley L 2005 J. Appl. Phys. 97 044315
[31] Cao B Q, Teng X M, He S H, Li Y, Li G H and Cai W P 2007 J. Phys. Chem. C 111 2470
[32] Jo S H, Lao J Y, Ren Z F, Farrer R A, Baldacchini T and Fourkas J T 2003 Appl. Phys. Lett. 83 4821
[33] Wang Z Q, Gong J F, Su Y, Jiang Y W and Yang S G 2010 Cryst. Grow. Des. 10 2455
[34] Huang J Z, Li S S and Feng X P 2010 Acta Phys. Sin. 59 5839 (in Chinese)
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[7] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[8] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[9] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[10] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[11] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[12] Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
Yao Wang(王垚), Sheng-Wang Yu(于盛旺), Yan-Peng Xue(薛彦鹏), Hong-Jun Hei(黑鸿君), Yan-Xia Wu(吴艳霞), and Yan-Yan Shen(申艳艳). Chin. Phys. B, 2021, 30(6): 068101.
[13] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[14] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[15] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
No Suggested Reading articles found!