Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064301    DOI: 10.1088/1674-1056/21/6/064301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Point defect states of a hollow cylinder in two-dimensional phononic crystal

Gao Xiao-Wei(高晓薇)a)b), Chen Shi-Bo(陈世波)a), Chen Jian-Bing(陈建兵)c), Zheng Qin-Hong(郑勤红) b), and Yang Hai(杨海)a)
a. Physics Department, Kunming University, Kunming 650214, China;
b. Department of Physics, Yunnan Normal University, Kunming 650092, China;
c. Department of Information Management, Yunnan Normal University, Kunming 650092, China
Abstract  Point defect states in two-dimensional phononic crystal of a hollow mercury cylinder in a water host are studied. An improved plane expansion method combined with the supercell technique is used to calculate the band gaps and the pressure distribution at the defect position. The sonic pressure of defect modes shows that the waves are localized at or near the defect. As the filing fraction increases, more defect modes appear in the band gaps.
Keywords:  phononic crystal      point defect      cavity defect      hollow cylinder  
Received:  27 September 2011      Revised:  24 October 2011      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  61.72.J- (Point defects and defect clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10864009), the Natural Science Foundation of Yunnan Province, China (Grant No. 2008CD109), and the State Key Program of the National Natural Science of China (Grant No. 50734007).
Corresponding Authors:  Yang Hai     E-mail:  kmyangh@263.net

Cite this article: 

Gao Xiao-Wei(高晓薇), Chen Shi-Bo(陈世波), Chen Jian-Bing(陈建兵), Zheng Qin-Hong(郑勤红), and Yang Hai(杨海) Point defect states of a hollow cylinder in two-dimensional phononic crystal 2012 Chin. Phys. B 21 064301

[1] Vasseur J O, Djafari R B, Dobrzynski L and Deymier P A 1977 J. Phys.: Condens. Matter 9 7327
[2] García-Pablos D, Sigalas M, Montero de Espinosa F R, Torres M, Kafesaki M and García N 2000 Phys. Rev. Lett. 84 4349
[3] Yang S, Page J H, Liu Z, Cowan M L, Chan C T and Sheng P 2004 Phys. Rev. Lett. 93 024301
[4] Vasseur J O, Hladky H A C, Djafari R B, Duval F, Dubus B and Pennec Y 2007 J. Appl. Phys. 101 114904
[5] Liu Q N 2011 Acta Phys. Sin. 60 014217 (in Chinese)
[6] Liu Q N 2011 Acta Phys. Sin. 60 044302 (in Chinese)
[7] Gao G Q, Ma S L, Jin F, Kim T B and Lu T J 2010 Acta Phys. Sin. 59 393 (in Chinese)
[8] Chen S B, Han X Y, Yu D L and Wen J H 2010 Acta Phys. Sin. 59 387 (in Chinese)
[9] Li X C, Gao J L, Liu S E, Zhou K C and Huang B Y 2010 Acta Phys. Sin. 59 381 (in Chinese)
[10] Li X C, Gao J L, Liu S E, Zhou K C and Huang B Y 2010 Acta Phys. Sin. 59 376 (in Chinese)
[11] Dong H F, Wu F G, Mu Z F and Zhong H L 2010 Acta Phys. Sin. 59 754 (in Chinese)
[12] Fang J Y, Yu D L, Han X Y and Cai L 2009 Chin. Phys. B 18 1316
[13] Wen J H, Yu D L, Liu J W, Xiao Y and Wen X S 2009 Chin. Phys. B 18 2404
[14] Hao G J, Fu X J and Hou Z L 2009 Acta Phys. Sin. 58 8484 (in Chinese)
[15] Shen H J, Wen J H, Yu D L and Wen X S 2009 Acta Phys. Sin. 58 8357 (in Chinese)
[16] Wu H L, Zhao X Q and Gong S K 2010 Acta Phys. Sin. 59 515 (in Chinese)
[17] Ao B Y, Wang X L, Chen P H, Shi P, Hu W Y and Yang J Y 2010 Acta Phys. Sin. 59 4818 (in Chinese)
[18] Vasseur J O, Deymier P A, Jafari R B, Pennec Y and Hladky H A C 2008 Phys. Rve. B 77 085415
[19] Pennce Y, Djafari R B, Larabi H, Vasseur J O and Hladky H A C 2008 Phys. Rev. B 78 104105
[20] Zhang X, Liu Y Y, Wu F G and Liu Z Y 2003 Phys. Lett. A 317 144
[21] Khelif A, Choujaa A, Djafari R B, Wilm M, Ballandras S and Laude V 2003 Phys. Rev. B 68 214301
[22] Khelif A, Choujaa A, Benchabbane S, Djafari R B and Laude V 2004 Appl. Phys. Lett. 84 4400
[23] Sigalas M M 1998 J. Appl. Phys. 84 3029
[24] Zhang X, Liu Z Y, Liu Y Y and Wu F G 2004 Solid State Commun. 130 67
[25] Li X C and Liu Z Y 2005 Solid State Commun. 133 397
[26] Li X C and Liu Z Y 2005 Phys. Lett. A 338 413
[27] Wu F G, Hou Z L, Liu Z Y and Liu Y Y 2001 Phys. Lettt. A 292 198
[28] Sun J H and Wu T T 2005 Phys. Rev. B 71 174303
[29] Yao Z J, Yu G L, Wang Y S and Shi Z F 2009 I. J. Sol. Str. 46 2571
[30] Wu F G and Liu Z Y 2004 Phys. Rev. E 69 066609
[31] Wu F G, Liu Z Y and Liu Y Y 2002 Phys. Rev. E 66 046628
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[3] Defect physics of the quasi-two-dimensional photovoltaic semiconductor GeSe
Saichao Yan(闫赛超), Jinchen Wei(魏金宸), Shanshan Wang(王珊珊), Menglin Huang(黄梦麟), Yu-Ning Wu(吴宇宁), and Shiyou Chen(陈时友). Chin. Phys. B, 2022, 31(11): 116103.
[4] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[5] Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature
Rui Huang(黄瑞), Tian Lan(兰天), Chong Li(李冲), Jing Li(李景), and Zhiyong Wang(王智勇). Chin. Phys. B, 2021, 30(7): 076802.
[6] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
[7] Energetics and diffusion of point defects in Au/Ag metals:A molecular dynamics study
Zhi-Yong Liu(刘志勇), Bin He(何彬), Xin Qu(瞿鑫), Li-Bo Niu(牛莉博), Ru-Song Li(李如松), Fei Wang(王飞). Chin. Phys. B, 2019, 28(8): 083401.
[8] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[9] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
[10] Power flow analysis in a hybrid phononic crystal structure
Hanbei Guo(郭寒贝), Qiang Li(李强), Liubin Zhou(周刘彬), Lei Qiang(强磊). Chin. Phys. B, 2018, 27(3): 036302.
[11] Simulation and experimental investigation of low-frequency vibration reduction of honeycomb phononic crystals
Han-Bo Shao(邵瀚波), Guo-Ping Chen(陈国平), Huan He(何欢), Jin-Hui Jiang(姜金辉). Chin. Phys. B, 2018, 27(12): 126301.
[12] Acoustic-electromagnetic slow waves in a periodical defective piezoelectric slab
Xiao-juan Li(李小娟), Huan Ge(葛欢), Li Fan(范理), Shu-yi Zhang(张淑仪), Hui Zhang(张辉), Jin Ding(丁劲). Chin. Phys. B, 2017, 26(7): 074302.
[13] Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions
Ting Wang(王婷), Hui Wang(王辉), Mei-Ping Sheng(盛美萍), Qing-Hua Qin(秦庆华). Chin. Phys. B, 2016, 25(4): 046301.
[14] Band structures of elastic waves in two-dimensional eight-fold solid-solid quasi-periodic phononic crystals
Chen A-Li (陈阿丽), Liang Tong-Li (梁同利), Wang Yue-Sheng (汪越胜). Chin. Phys. B, 2015, 24(6): 066101.
[15] Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate
Huang Ping-Ping (黄平平), Yao Yuan-Wei (姚源卫), Wu Fu-Gen (吴福根), Zhang Xin (张欣), Li Jing (李静), Hu Ai-Zhen (胡爱珍). Chin. Phys. B, 2015, 24(5): 054301.
No Suggested Reading articles found!