ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Acoustic-electromagnetic slow waves in a periodical defective piezoelectric slab |
Xiao-juan Li(李小娟), Huan Ge(葛欢), Li Fan(范理), Shu-yi Zhang(张淑仪), Hui Zhang(张辉), Jin Ding(丁劲) |
Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Coupled slow waves, slow acoustic waves, and electromagnetic waves are simultaneously achieved based on a piezoelectric material, in which a line defect is created within a honeycomb lattice array of cylindrical holes etched in a LiNbO3 slab. Finite element simulations in frequency domain and time domain demonstrate that a highly localized slow mode is obtained in the defect. Owing to the piezoelectricity of LiNbO3, acoustic and electromagnetic waves are coupled with each other and transmit along the line defect. Therefore, in addition to a slow acoustic wave, an electromagnetic wave with a group velocity even lower than conventional acoustic waves is achieved.
|
Received: 22 January 2017
Revised: 01 March 2017
Accepted manuscript online:
|
PACS:
|
43.38.Fx
|
(Piezoelectric and ferroelectric transducers)
|
|
43.35.Cg
|
(Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in solids; elastic constants)
|
|
43.35.Gk
|
(Phonons in crystal lattices, quantum acoustics)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No.2012CB921504),the National Natural Science Foundation of China (Grant Nos.11374154,10904067,and 11174142),the Natural Science Foundation of Jiangsu Province of China (Grant No.BK20151375),and the Special Fund for Research in Quality Inspection of Public Welfare Industry,China (Grant No.201510068). |
Corresponding Authors:
Li Fan
E-mail: fanli@nju.edu.cn
|
Cite this article:
Xiao-juan Li(李小娟), Huan Ge(葛欢), Li Fan(范理), Shu-yi Zhang(张淑仪), Hui Zhang(张辉), Jin Ding(丁劲) Acoustic-electromagnetic slow waves in a periodical defective piezoelectric slab 2017 Chin. Phys. B 26 074302
|
[1] |
Parra E and Lowell J R 2007 Opt. Photon. News 18 41
|
[2] |
Krauss T F 2008 Nat. Photon. 2 448
|
[3] |
Gan Q Q, Gao Y K, Wagner K, Vezenov D, Ding Y J and Bartoli F J 2011 PNAS 108 5169
|
[4] |
Xu Q F, Dong P and Lipson M 2007 Nat. Phys. 3 406
|
[5] |
Noda S, Chutinan A and Imada M 2000 Nature 407 608
|
[6] |
Vlasov Y A, O'boyle M, Hamann H F and Mcnab S J 2005 Nature 438 65
|
[7] |
Kafesaki M, Sigalas M M and García N 2000 Phys. Rev. Lett. 85 4044
|
[8] |
Christensen J, Huidobro P A, Martín-moreno L and García-vidal F J 2008 Appl. Phys. Lett. 93 083502
|
[9] |
Zhu J, Chen Y Y, Zhu X F, Garcia-vidal F J, Yin X B, Zhang W L and Zhang X 2013 Sci. Rep. 3 1728
|
[10] |
Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q and Liu X J 2015 Nat. Mater. 14 1013
|
[11] |
Zhu X F, Liang B, Kan W W, Peng Y G and Cheng J C 2016 Phys. Rev. Appl. 5 054015
|
[12] |
Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C and Liu S C 2016 Nat. Commun. 7 11731
|
[13] |
Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H and Zhu X F 2016 Nat. Commun. 7 13368
|
[14] |
Santillan A and Bozhevolnyi S I 2011 Phys. Rev. B 84 064304
|
[15] |
Santillan A and Bozhevolnyi S I 2014 Phys. Rev. B 89 184301
|
[16] |
Li X J, Xue C, Fan L, Zhang S Y, Chen Z, Ding J and Zhang H 2016 Appl. Phys. Lett. 108 231904
|
[17] |
Hsiao F L, Khelif A, Moubchir H, Choujaa A, Chen C C and Laude V 2007 Phys. Rev. E 76 056601
|
[18] |
Robertson W M, Baker C and Bennett C B 2004 Am. J. Phys. 72 255
|
[19] |
Cicek A, Kaya O A, Yilmaz M and Ulug B 2012 J. Appl. Phys. 111 013522
|
[20] |
Yanik M F and Fan S H 2007 Nat. Phys. 3 372
|
[21] |
Mohammadi S, Eftekhar A A, Khelif A, Hunt W D and Adibi A 2008 Appl. Phys. Lett. 92 221905
|
[22] |
Vasseur J O, Hladky-hennion A C, Djafari-rouhani B, Duval F, Dubus B and Pennec Y 2007 J. Appl. Phys. 101 114904
|
[23] |
Mohammadi S, Eftekhar A A, Hunt W D and Adibi A 2009 Appl. Phys. Lett. 94 051906
|
[24] |
Wilm M, Khelif A, Laude V and Ballandras S 2007 J. Acoust. Soc. Am. 122 786
|
[25] |
Vatanabe S L, Paulino G H and Silva E C N 2014 J. Acoust. Soc. Am. 136 494
|
[26] |
Degraeve S, Granger C, Dubus B, Vasseur J O, Thi M P and Hladky A C 2015 Smart Mater. Struct. 24 085013
|
[27] |
Achaoui Y, Khelif A, Benchabane S and Laude V 2010 J. Phys. D:Appl. Phys. 43 185401
|
[28] |
Yamauchi N, Shirai T, Yoshihara T, Hayasaki Y, Ueda T, Matsushima T, Wasa K, Kanno I and Kotera H 2009 Appl. Phys. Lett. 94 172903
|
[29] |
Lin C M, Lien W C, Felmetsger V V, Hopcroft M A, Senesky D G and Pisano A P 2010 Appl. Phys. Lett. 97 141907
|
[30] |
Wasa K, Matsushima T, Adachi H, Kanno I and Kotera H 2012 J. Microelectromech. S. 21 451
|
[31] |
Auld B A 1973 Acoustic Fields and Waves in Solid (New York:John Wiley & Sons)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|