Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074302    DOI: 10.1088/1674-1056/26/7/074302

Acoustic-electromagnetic slow waves in a periodical defective piezoelectric slab

Xiao-juan Li(李小娟), Huan Ge(葛欢), Li Fan(范理), Shu-yi Zhang(张淑仪), Hui Zhang(张辉), Jin Ding(丁劲)
Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China

Coupled slow waves, slow acoustic waves, and electromagnetic waves are simultaneously achieved based on a piezoelectric material, in which a line defect is created within a honeycomb lattice array of cylindrical holes etched in a LiNbO3 slab. Finite element simulations in frequency domain and time domain demonstrate that a highly localized slow mode is obtained in the defect. Owing to the piezoelectricity of LiNbO3, acoustic and electromagnetic waves are coupled with each other and transmit along the line defect. Therefore, in addition to a slow acoustic wave, an electromagnetic wave with a group velocity even lower than conventional acoustic waves is achieved.

Keywords:  piezoelectric material      phononic crystals      group velocity      slow wave  
Received:  22 January 2017      Revised:  01 March 2017      Accepted manuscript online: 
PACS:  43.38.Fx (Piezoelectric and ferroelectric transducers)  
  43.35.Cg (Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in solids; elastic constants)  
  43.35.Gk (Phonons in crystal lattices, quantum acoustics)  

Project supported by the National Basic Research Program of China (Grant No.2012CB921504),the National Natural Science Foundation of China (Grant Nos.11374154,10904067,and 11174142),the Natural Science Foundation of Jiangsu Province of China (Grant No.BK20151375),and the Special Fund for Research in Quality Inspection of Public Welfare Industry,China (Grant No.201510068).

Corresponding Authors:  Li Fan     E-mail:

Cite this article: 

Xiao-juan Li(李小娟), Huan Ge(葛欢), Li Fan(范理), Shu-yi Zhang(张淑仪), Hui Zhang(张辉), Jin Ding(丁劲) Acoustic-electromagnetic slow waves in a periodical defective piezoelectric slab 2017 Chin. Phys. B 26 074302

[1] Parra E and Lowell J R 2007 Opt. Photon. News 18 41
[2] Krauss T F 2008 Nat. Photon. 2 448
[3] Gan Q Q, Gao Y K, Wagner K, Vezenov D, Ding Y J and Bartoli F J 2011 PNAS 108 5169
[4] Xu Q F, Dong P and Lipson M 2007 Nat. Phys. 3 406
[5] Noda S, Chutinan A and Imada M 2000 Nature 407 608
[6] Vlasov Y A, O'boyle M, Hamann H F and Mcnab S J 2005 Nature 438 65
[7] Kafesaki M, Sigalas M M and García N 2000 Phys. Rev. Lett. 85 4044
[8] Christensen J, Huidobro P A, Martín-moreno L and García-vidal F J 2008 Appl. Phys. Lett. 93 083502
[9] Zhu J, Chen Y Y, Zhu X F, Garcia-vidal F J, Yin X B, Zhang W L and Zhang X 2013 Sci. Rep. 3 1728
[10] Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q and Liu X J 2015 Nat. Mater. 14 1013
[11] Zhu X F, Liang B, Kan W W, Peng Y G and Cheng J C 2016 Phys. Rev. Appl. 5 054015
[12] Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C and Liu S C 2016 Nat. Commun. 7 11731
[13] Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H and Zhu X F 2016 Nat. Commun. 7 13368
[14] Santillan A and Bozhevolnyi S I 2011 Phys. Rev. B 84 064304
[15] Santillan A and Bozhevolnyi S I 2014 Phys. Rev. B 89 184301
[16] Li X J, Xue C, Fan L, Zhang S Y, Chen Z, Ding J and Zhang H 2016 Appl. Phys. Lett. 108 231904
[17] Hsiao F L, Khelif A, Moubchir H, Choujaa A, Chen C C and Laude V 2007 Phys. Rev. E 76 056601
[18] Robertson W M, Baker C and Bennett C B 2004 Am. J. Phys. 72 255
[19] Cicek A, Kaya O A, Yilmaz M and Ulug B 2012 J. Appl. Phys. 111 013522
[20] Yanik M F and Fan S H 2007 Nat. Phys. 3 372
[21] Mohammadi S, Eftekhar A A, Khelif A, Hunt W D and Adibi A 2008 Appl. Phys. Lett. 92 221905
[22] Vasseur J O, Hladky-hennion A C, Djafari-rouhani B, Duval F, Dubus B and Pennec Y 2007 J. Appl. Phys. 101 114904
[23] Mohammadi S, Eftekhar A A, Hunt W D and Adibi A 2009 Appl. Phys. Lett. 94 051906
[24] Wilm M, Khelif A, Laude V and Ballandras S 2007 J. Acoust. Soc. Am. 122 786
[25] Vatanabe S L, Paulino G H and Silva E C N 2014 J. Acoust. Soc. Am. 136 494
[26] Degraeve S, Granger C, Dubus B, Vasseur J O, Thi M P and Hladky A C 2015 Smart Mater. Struct. 24 085013
[27] Achaoui Y, Khelif A, Benchabane S and Laude V 2010 J. Phys. D:Appl. Phys. 43 185401
[28] Yamauchi N, Shirai T, Yoshihara T, Hayasaki Y, Ueda T, Matsushima T, Wasa K, Kanno I and Kotera H 2009 Appl. Phys. Lett. 94 172903
[29] Lin C M, Lien W C, Felmetsger V V, Hopcroft M A, Senesky D G and Pisano A P 2010 Appl. Phys. Lett. 97 141907
[30] Wasa K, Matsushima T, Adachi H, Kanno I and Kotera H 2012 J. Microelectromech. S. 21 451
[31] Auld B A 1973 Acoustic Fields and Waves in Solid (New York:John Wiley & Sons)
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
[4] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[5] Review on second-harmonic generation of ultrasonic guided waves in solid media (I):Theoretical analyses
Wei-Bin Li(李卫彬), Ming-Xi Deng(邓明晰), Yan-Xun Xiang(项延训). Chin. Phys. B, 2017, 26(11): 114302.
[6] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[7] Superluminal light attenuated by strong dispersion of complex refractive index
Abdurahman Ahmed Yonis, Vadim Nickolaevich Mal'nev, Belayneh Mesfin Ali. Chin. Phys. B, 2016, 25(2): 027801.
[8] Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Yang Sun(孙阳), Qi-Hu Li(李启虎). Chin. Phys. B, 2016, 25(12): 127701.
[9] Band structures of elastic waves in two-dimensional eight-fold solid-solid quasi-periodic phononic crystals
Chen A-Li (陈阿丽), Liang Tong-Li (梁同利), Wang Yue-Sheng (汪越胜). Chin. Phys. B, 2015, 24(6): 066101.
[10] Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate
Huang Ping-Ping (黄平平), Yao Yuan-Wei (姚源卫), Wu Fu-Gen (吴福根), Zhang Xin (张欣), Li Jing (李静), Hu Ai-Zhen (胡爱珍). Chin. Phys. B, 2015, 24(5): 054301.
[11] A staggered double vane circuit for a W-band traveling-wave tube amplifier
Lai Jian-Qiang(赖剑强), Wei Yan-Yu(魏彦玉), Liu Yang(刘洋), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Wang Wen-Xiang(王文祥), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(6): 068403.
[12] Subluminal to superluminal light propagation in a V-type three-level atomic system interacting with squeezed vacuum
Zhang Qin(张琴), Qu Guang-Hui(屈光辉), Tang Yuan-He(唐远河), Jin Kang(金康), and Ji Wei-Li(纪卫莉) . Chin. Phys. B, 2012, 21(2): 023201.
[13] Tuning of band-gap of phononic crystals with initial confining pressure
Feng Rong-Xin (冯荣欣), Liu Kai-Xin (刘凯欣). Chin. Phys. B, 2012, 21(12): 126301.
[14] Controlling group velocity in a superconductive quantum circuit
Qiu Tian-Hui (邱田会), Yang Guo-Jian (杨国建). Chin. Phys. B, 2012, 21(10): 104205.
[15] Engineering the light propagating features through the two-dimensional coupled-cavity photonic crystal waveguides
Feng Shuai(冯帅) and Wang Yi-Quan(王义全) . Chin. Phys. B, 2011, 20(5): 054209.
No Suggested Reading articles found!