Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 126301    DOI: 10.1088/1674-1056/27/12/126301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Simulation and experimental investigation of low-frequency vibration reduction of honeycomb phononic crystals

Han-Bo Shao(邵瀚波), Guo-Ping Chen(陈国平), Huan He(何欢), Jin-Hui Jiang(姜金辉)
State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  

The honeycomb phononic crystal displays good performance in reducing vibration, especially at low frequency, but there are few corresponding experiments involving this kind of phononic crystal and the influence of geometric parameters on the bandgap is unclear. We design a honeycomb phononic crystal, which is assembled by using a chemigum plate and a steel column, calculate the bandgaps of the phononic crystal, and analyze the vibration modes. In the experiment, we attach a same-sized rubber plate and a phononic crystal to a steel plate separately in order to compare their vibration reduction performances. We use 8×8 unit cells as a complete phononic crystal plate to imitate an infinite period structure and choose a string suspension arrangement to support the experiment. The results show that the honeycomb phononic crystal can reduce the vibrating plate magnitude by up to 60 dB in a frequency range of 600 Hz-900 Hz, while the rubber plate can reduce only about 20 dB. In addition, we study the effect of the thickness of plate and the height and the radius of the column in order to choose the most superior parameters to achieve low frequency and wide bandgap.

Keywords:  honeycomb phononic crystal      reducing vibration      bandgap  
Received:  08 August 2018      Revised:  27 September 2018      Accepted manuscript online: 
PACS:  63.20.-e (Phonons in crystal lattices)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
Fund: 

Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. NS2017003).

Corresponding Authors:  Guo-Ping Chen     E-mail:  gpchen@nuaa.edu.cn

Cite this article: 

Han-Bo Shao(邵瀚波), Guo-Ping Chen(陈国平), Huan He(何欢), Jin-Hui Jiang(姜金辉) Simulation and experimental investigation of low-frequency vibration reduction of honeycomb phononic crystals 2018 Chin. Phys. B 27 126301

[1] Liang C H, Sun M X and Liu H X 2014 J. Aerosp. Power 29 1701
[2] Zhang A, Cui L and Zhang P 2013 IEEE Computer Society International Conference on Information Technology and Applications, p. 462
[3] Chen G K, Wang Y and Zhang Y 2011 IEEE International Conference on Industrial Engineering and Engineering Management, p. 1760
[4] Jiang C, Deng M and Tomono T 2010 IEEE International Symposium on Intelligent Control, p. 2397
[5] Chen Y, Shi K and Wen X 2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology, p. 625
[6] Tourajizadeh H and Zare S 2016 Aerosp. Sci. Technol. 50 1
[7] Prakash S, Kumar T G R, Raja S, et al. 2016 J. Sound Vib. 361 32
[8] Nutan R A and Raghavan S 2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology, p. 625
[9] Kushwaha M S, Halevi P, Martínez G, et al. 1994 Phys. Rev. B 49 2313
[10] Liu Z, Chan C T and Sheng P 2005 Phys. Rev. B 71 014103
[11] Sigalas M M and Economou E N 1992 J. Sound Vib. 158 377
[12] Brillouin L 1953 Wave Propagation in Periodic Structures, 2nd edn. (New York: Dover Publications)
[13] Wen X S, Wen J H, Yu D L, et al. 2009 Phononic crystals (Beijing: National Defense Industry Press) ISBN: 9787118063424
[14] Tanaka Y and Tamura S I 1998 Phys. Rev. B 58 7958
[15] Kushwaha M S and Halevi P 1997 J. Acoust. Soc. Am. 101 619
[16] Liu Z M 2005 National University of Defense Technology
[17] Sigalas M and Economou E N 1993 J. Solid State Commun. 86 141
[18] Liu Z Y, Zhang X X, Mao Y W, et al. 2000 Science 289 1734
[19] Zhang Z and Han X K 2016 Phys. Lett. A 380 3766
[20] Li F, Zhang C and Liu C 2017 J. Sound Vib. 393 14
[21] Sun L 2017 Appl. Acoust. 119 101
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[4] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[5] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[8] Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector
Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军). Chin. Phys. B, 2021, 30(3): 036101.
[9] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[10] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
[11] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[12] Review of deep ultraviolet photodetector based on gallium oxide
Yuan Qin(覃愿), Shibing Long(龙世兵), Hang Dong(董航), Qiming He(何启鸣), Guangzhong Jian(菅光忠), Ying Zhang(张颖), Xiaohu Hou(侯小虎), Pengju Tan(谭鹏举), Zhongfang Zhang(张中方), Hangbing Lv(吕杭炳), Qi Liu(刘琦), Ming Liu(刘明). Chin. Phys. B, 2019, 28(1): 018501.
[13] Photonic crystal structures: Beam deflector and beam router
Utku Erdiven, Erkan Tetik, Faruk Karadag. Chin. Phys. B, 2018, 27(4): 044204.
[14] Precisely tuning Ge substitution for efficient solution-processed Cu2ZnSn(S, Se)4 solar cells
Xinshou Wang(王新收), Dongxing Kou(寇东星), Wenhui Zhou(周文辉), Zhengji Zhou(周正基), Qingwen Tian(田庆文), Yuena Meng(孟月娜), Sixin Wu(武四新). Chin. Phys. B, 2018, 27(1): 018809.
[15] Investigation of Zn1-xCdxO films bandgap and Zn1-xCdxO/ZnO heterojunctions band offset by x-ray photoelectron spectroscopy
Jie Chen(陈杰), Xue-Min Wang(王雪敏), Ji-Cheng Zhang(张继成), Hong-Bu Yin(尹泓卜), Jian Yu(俞健), Yan Zhao(赵妍), Wei-Dong Wu(吴卫东). Chin. Phys. B, 2017, 26(8): 087309.
No Suggested Reading articles found!