Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064401    DOI: 10.1088/1674-1056/21/6/064401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High temperature thermal behaviour modeling of large-scale fused silica optics for laser facility

Yu Jing-Xia(于景侠)a), He Shao-Bo(贺少勃)b), Xiang Xia(向霞)a), Yuan Xiao-Dong(袁晓东)b), Zheng Wan-Guo(郑万国) b), LŰ Hai-Bing(吕海兵)b), and Zu Xiao-Tao(祖小涛)a)
a. Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b. Research Centre of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  High temperature annealing is often used for the stress control of optical materials. However, weight and viscosity at high temperature may destroy the surface morphology, especially for the large-scale, thin and heavy optics used for large laser facilities. It is necessary to understand the thermal behaviour and design proper support systems for large-scale optics at high temperature. In this work, three support systems for fused silica optics are designed and simulated with the finite element method. After the analysis of the thermal behaviours of different support systems, some advantages and disadvantages can be revealed. The results show that the support with the optical surface vertical is optimal because both pollution and deformation of optics could be well controlled during annealing at high temperature. Annealing process of the optics irradiated by CO2 laser is also simulated. It can be concluded that high temperature annealing can effectively reduce the residual stress. However, the effects of annealing on surface morphology of the optics are complex. Annealing creep is closely related to the residual stress and strain distribution. In the region with large residual stress, the creep is too large and probably increases the deformation gradient which may affect the laser beam propagation.
Keywords:  numerical simulation      support systems      large-scale fused silica      high temperature  
Received:  20 October 2011      Revised:  12 December 2011      Accepted manuscript online: 
PACS:  44.05.+e (Analytical and numerical techniques)  
  45.10.-b (Computational methods in classical mechanics)  
  62.20.-x (Mechanical properties of solids)  
  81.40.Lm (Deformation, plasticity, and creep)  
Fund: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11076008), the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. L08010401JX0806), and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2009X007).
Corresponding Authors:  Zu Xiao-Tao     E-mail:  xtzu@uestc.edu.cn

Cite this article: 

Yu Jing-Xia(于景侠), He Shao-Bo(贺少勃), Xiang Xia(向霞), Yuan Xiao-Dong(袁晓东), Zheng Wan-Guo(郑万国), LŰ Hai-Bing(吕海兵), and Zu Xiao-Tao(祖小涛) High temperature thermal behaviour modeling of large-scale fused silica optics for laser facility 2012 Chin. Phys. B 21 064401

[1] Xiang X, Zheng W G, Yuan X D, Dai W, Jiang Y, Li X B, Wang H J, Lu H B and Zu X T 2011 Chin. Phys. B 20 044208
[2] Deng H X, Jiang X D, Xiang X, Sun K, Yuan X D, Zheng W G, Gao F and Zu X T 2010 Chin. Phys. B 19 107801
[3] Deng H X, Xiang X, Zheng W G, Yuan X D, Wu S Y, Jiang X D, Gao F, Zu X T and Sun K 2010 J. Appl. Phys. 108 103116
[4] Deng H X, Zu X T, Xiang X and Sun K 2010 Phys. Rev. Lett. 105 113603
[5] Neauport J, Lamaignere L, Bercegol H, Pilon F and Birolleau J C 2005 Opt. Express 13 10163
[6] Demos S G, Staggs M and Kozlowski M R 2002 Appl. Opt. 41 3628
[7] Guignard F, Autric M L and Baudinaud V 1998 Proc. SPIE 3343 534
[8] Liu H J, Huang J, Wang F R, Zhou X D, Jiang X D and Wu W D 2009 Acta Phys. Sin. 59 1308 (in Chinese)
[9] Argument M A, Chau K, Tsui Y Y and Fedosejevs R 2003 Proc. SPIE 4833 268
[10] Matthews M J, Stolken J S, Vignes R M, Norton M A, Yang S, Cooke J D, Guss G M and Adams J J 2009 Proc. SPIE 7504 750410
[11] Bruce D M 1997 Proc. SPIE 3223 270
[12] Tang C J, Jaing C C, Lee K H and Lee C C 2010 Appl. Opt. 50 C62
[13] Lee C C, Chen H C and Jaing C C 2006 Appl. Opt. 45 3091
[14] Rzodkiewicz W and Przewlocki H M 2003 Proc. SPIE 5064 281
[15] Schipani P, D'Orsi S, Ferragina L, Fierro D, Marty L, Molfese C and Perrotta F 2010 Appl. Opt. 49 1234
[16] Noailles S, Bart T, Schmitz P, Hugget A, Ferbos R, Bouillet S, Leymarie C and Martin S 2007 Proc. SPIE 6665 66650Z
[17] Gao M and Ren J 2006 Proc. SPIE 6148 61480Q
[18] Canonsburg P 2006 'ANSYS Theory Reference Release 9.0' ANSYS Inc.
[19] Xiang X, Zheng W G, Yuan X D, Jiang Y, Dai W, Huang J, Wang H J, Li X B, L? H B, He S B and Zu X T 2011 High Power Laser and Particle Beams 23 2396 (in Chinese)
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[5] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[6] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[7] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[8] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[9] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[10] Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch
Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟). Chin. Phys. B, 2022, 31(3): 037402.
[11] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[12] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[13] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[14] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[15] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
No Suggested Reading articles found!