Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064209    DOI: 10.1088/1674-1056/21/6/064209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Activation of silicon quantum dots and coupling between the active centre and the defect state of the photonic crystal in a nanolaser

Huang Wei-Qi(黄伟其)a)†, Chen Hang-Qiong(陈汉琼)a), Shu Qin(苏琴)a), Liu Shi-Rong(刘世荣)b)‡, and Qin Chao-Jian(秦朝建)b)
a. Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025, China;
b. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003, China
Abstract  A new nanolaser concept using silicon quantum dots (QDs) is proposed. The conduction band opened by the quantum confinement effect gives the pumping levels. Localized states in the gap due to some surface bonds on Si QDs can be formed for the activation of emission. An inversion of population can be generated between the localized states and the valence band in a QD fabricated by using a nanosecond pulse laser. Coupling between the active centres formed by localized states and the defect states of the two-dimensional (2D) photonic crystal can be used to select the model in the nanolaser.
Keywords:  nanolaser      Si quantum dots      localized states      photonic crystal  
Received:  14 July 2011      Revised:  22 November 2011      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  78.45.+h (Stimulated emission)  
  78.55.Mb (Porous materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60966002) and the National Key Laboratory Fund of Surface Physics at Fudan University, (Grant No. 20090606).
Corresponding Authors:  Huang Wei-Qi, Liu Shi-Rong     E-mail:  WQHuang2001@yahoo.com; Shirong@yahoo.com

Cite this article: 

Huang Wei-Qi(黄伟其), Chen Hang-Qiong(陈汉琼), Shu Qin(苏琴), Liu Shi-Rong(刘世荣), and Qin Chao-Jian(秦朝建) Activation of silicon quantum dots and coupling between the active centre and the defect state of the photonic crystal in a nanolaser 2012 Chin. Phys. B 21 064209

[1] Pavesi L, Negro L D, Mazzoleni C, Franzo G and Prioto E 2000 Nature 408 440
[2] Fauchet P M, Ruan J, Chen H, Pavesi L, Negro L D, Cazzaneli M, Elliman R G, Smith N, Smoc M and Davies B L 2005 Opt. Mater. 27 745
[3] Yang Y, Wang C, Yang R D, Li L, Xiong F and Bao J M 2009 Chin. Phys. B 18 4906
[4] Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R and Qin C J 2008 Appl. Phys. Lett. 92 221910
[5] Rong H S, Liu A S, Jones R C, Cohen O, Hak D, Nicolaescu R, Fang A and Paniccia M 2005 Nature 433 292
[6] Faraci G, Gibilisco S, Pennisi A R, Franzo G, Rosa S L and Lozzi L 2008 Phys. Rev. B 78 245425
[7] Lockwood R, McFarlane S, Nunez J R R, Wang X Y, Veinot J G C and Meldrum A 2011 Lummin. J. 131 1530
[8] Huang W Q, Zhang R T, Wang H X, Jin F, Xu L, Qin S J, Wu K Y, Liu S R and Qin C J 2008 Opt. Commun. 281 5229
[9] Huang W Q, Xu L, Wu K Y and Liu S R 2007 J. Appl. Phys. 102 053517
[10] Chen S, Qian B, Chen K J, Zhang X G, Xu J, Ma Z Y, Li W and Huang X F 2007 Appl. Phys. Lett. 90 174101
[11] Dousse A, Lanco L, Suffczynski J, Semenova E, Miard A, Lemaitre A, Sagnes I, Roblin C, Bloch J and Senellart P 2008 Phys. Rev. Lett. 101 267404
[12] Kaniber M, Laucht A, Neumann A, Villas-Boas J M, Bichler M, Amann M C and Finley J J 2008 Phys. Rev. B 77 161303
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[8] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[12] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[15] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
No Suggested Reading articles found!