Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 060303    DOI: 10.1088/1674-1056/21/6/060303
GENERAL Prev   Next  

Security proof of counterfactual quantum cryptography against general intercept-resend attacks and its vulnerability

Zhang Sheng(张盛), Wang Jian(王剑), and Tang Chao-Jing(唐朝京)
School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal particles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-splitting attack. In this paper, the theoretical security of counterfactual quantum cryptography protocol against the general intercept-resend attacks is proved by bounding the information of an eavesdropper Eve more tightly than in Yin's proposal [Phys. Rev. A 82 042335 (2010)]. It is also shown that practical counterfactual quantum cryptography implementations may be vulnerable when equipped with imperfect apparatuses, by proving that a negative key rate can be achieved when Eve launches a time-shift attack based on imperfect detector efficiency.
Keywords:  quantum cryptography      quantum counterfactuality      quantum information  
Received:  23 October 2011      Revised:  04 January 2012      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60872052).
Corresponding Authors:  Zhang Sheng     E-mail:  shengzhcn@gmail.com

Cite this article: 

Zhang Sheng(张盛), Wang Jian(王剑), and Tang Chao-Jing(唐朝京) Security proof of counterfactual quantum cryptography against general intercept-resend attacks and its vulnerability 2012 Chin. Phys. B 21 060303

[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, December 9-12, 1984, Bangalore, India, p. 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[4] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Infor. Comput. 4 325
[5] Stucki D, Gisin N, Guinnard O, Robordy G and Zbinden H 2002 New J. Phys. 4 41
[6] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502
[7] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Proceedings of IEEE International Symposium of Information Theory July 9-14, 2006, Seattle, Washington, USA p. 2094
[8] Elliot C, Pearson D and Troxel G 2003 Proceeding of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications August 25-29, 2003, Karlsruhe, Germany p. 227
[9] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502
[10] Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F and Guo G C 2008 Chin. Sci. Bull. 54 2991
[11] Noh T G 2009 Phys. Rev. Lett. 103 230501
[12] Elitzur A C and Vaidman L 1993 Found. Phys. 23 987
[13] Vaidman L 2007 Phys. Rev. Lett. 98 160403
[14] Yin Z Q, Li H W, Chen W and Han Z F 2010 Phys. Rev. A 82 042335
[15] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[16] Makarov V, Anisimov A and Skaar J 2006 Phys. Rev. A 74 441
[17] Makarov V 2008 Quantum Infor. Comput. 8 622
[18] Fung C H F, Qi B, Tamaki K and Lo H K 2007 Quantum Infor. Comput. 7 73
[19] Fung C H F, Qi B, Tamaki K and Lo H K 2007 Phys. Rev. A 75 032314
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[3] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[4] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[5] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[8] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[9] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[10] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[11] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[12] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[13] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[14] Entangled-photons generation with quantum dots
Yuan Li(李远), Fei Ding(丁飞), Oliver G Schmidt. Chin. Phys. B, 2018, 27(2): 020307.
[15] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
No Suggested Reading articles found!