Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 060201    DOI: 10.1088/1674-1056/21/6/060201
GENERAL   Next  

Fractional backward Kolmogorov equations

Zhang Hong(张红), Li Guo-Hua(李国华), and Luo Mao-Kang(罗懋康)
College of Mathematics, Sichuan University, Chengdu 610064, China
Abstract  This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equation in the fractal time whose coefficient functions are independent of time, its solution is equal to the transfer probability density function of the subordinated process X(Sα(t)), the subordinator Sα(t) is termed as the inverse-time α-stable subordinator and the process X(τ) satisfies the corresponding time homogeneous Itô stochastic differential equation.
Keywords:  anomalous diffusive      fractional backward Kolmogorov equations      subordinated process  
Received:  09 January 2012      Revised:  15 February 2012      Accepted manuscript online: 
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.30.Pr (Fractional statistics systems)  
  05.10.Gg (Stochastic analysis methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11171238).
Corresponding Authors:  Luo Mao-Kang     E-mail:  makaluo@scu.edu.cn

Cite this article: 

Zhang Hong(张红), Li Guo-Hua(李国华), and Luo Mao-Kang(罗懋康) Fractional backward Kolmogorov equations 2012 Chin. Phys. B 21 060201

[1] Bao J D, Zhou Y and Lü K 2006 Phys. Rev. E 74 041125
[2] Bao J D and Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104
[3] Zhang Z J, Yu M, Gong L Y and Tong P Q 2011 Acta Phys. Sin. 60 097104 (in Chinese)
[4] Mishura Y S 2008 Stochastic Calculus for Fractional Brownian Motion and Related Processes (Berlin: Springer-Verlag)
[5] Jeon J H and Metzler R 2010 Phys. Rev. E 81 021103
[6] Metzler R and Klafter J 2000 Phys. Rep. 339 pp. 1-77
[7] Henry B I, Langlands T A M and Straka P 2010 Phys. Rev. Lett. 105 170602
[8] Gu R C, Xu Y, Zhang H Q and Sun Z K 2011 Acta Phys. Sin. 60 110514 (in Chinese)
[9] Magdziarz M and Weron A 2008 Phys. Rev. Lett. 101 210601
[10] Metzler R and Klafter J 2000 Phys. Rev. E 61 6308
[11] Gajda J and Magdziarz M 2010 Phys. Rev. E 82 011117
[12] Stanislavsky A, Weron K and Weron A 2008 Phys. Rev. E 78 051106
[13] Magdziarz M 2009 Stochastic Processes and Their Applications 119 3238
[14] Weron A and Magdziarz M 2008 Phys. Rev. E 77 036704
[15] Zaslavsky G M 2002 Phys. Rep. 371 pp. 461-580
[16] Zaslavsky G M 2006 Hamiltonian Chaos and Fractional Dynamics (New York: Oxford University Press)
[17] Magdziarz M and Weron A 2007 Phys. Rev. E 76 066708
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[3] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force
Jinlian Jiang(姜金连), Wei Xu(徐伟), Ping Han(韩平), and Lizhi Niu(牛立志). Chin. Phys. B, 2022, 31(6): 060203.
[6] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[7] Viewing the noise propagation mechanism in a unidirectional transition cascade from the perspective of stability
Qi-Ming Pei(裴启明), Bin-Qian Zhou(周彬倩), Yi-Fan Zhou(周祎凡), Charles Omotomide Apata, and Long Jiang(蒋龙). Chin. Phys. B, 2021, 30(11): 118704.
[8] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[9] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[10] Dynamical analysis for hybrid virus infection system in switching environment
Dong-Xi Li(李东喜), Ni Zhang(张妮). Chin. Phys. B, 2020, 29(9): 090201.
[11] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[12] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[13] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[14] Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal
Yan-Fei Jin(靳艳飞). Chin. Phys. B, 2018, 27(5): 050501.
[15] Noise decomposition algorithm and propagation mechanism in feed-forward gene transcriptional regulatory loop
Rong Gui(桂容), Zhi-Hong Li(李治泓), Li-Jun Hu(胡丽君), Guang-Hui Cheng(程光晖), Quan Liu(刘泉), Juan Xiong(熊娟), Ya Jia(贾亚), Ming Yi(易鸣). Chin. Phys. B, 2018, 27(2): 028706.
No Suggested Reading articles found!