Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 058701    DOI: 10.1088/1674-1056/21/5/058701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Transient optical modulation properties in the terahertz metamaterial of split ring resonators

Zhou Qing-Li(周庆莉), Shi Yu-Lei(施宇蕾), Wang Ai-Hua(王爱华), Li Lei(李磊), and Zhang Cun-Lin(张存林)
Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics of Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  The ultrafast optical modulation properties of split ring resonators are characterized by utilizing optical pump--terahertz probe spectroscopy. The experimental results show that when the terahertz electric vector is perpendicular to the gap of the split ring resonator, resonant absorption can be quenched significantly under high pump excitation. However, when the terahertz electric vector is parallel to the gap, the resonant absorption is less sensitive to pump excitation due to the structural properties of the metamaterial. Our numerical simulations also demonstrate that the pump pulse significantly influences the split ring resonator current by generating carriers in the substrate.
Keywords:  terahertz      carrier dynamics      ultrafast spectra  
Received:  31 July 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  87.50.U-  
  98.58.Ay (Physical properties (abundances, electron density, magnetic fields, scintillation, scattering, kinematics, dynamics, turbulence, etc.))  
  78.47.J- (Ultrafast spectroscopy (<1 psec))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB310408), the National Natural Science Foundation of China (Grant Nos. 10804077, 10904098 and 11011120242), the Beijing Municipal Commission of Education, China (Grant No. KM200910028006), the Foundation for Key Program of Ministry of Education, China (Grant No. 210002), the Beijing Nova Program, and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality, China.

Cite this article: 

Zhou Qing-Li(周庆莉), Shi Yu-Lei(施宇蕾), Wang Ai-Hua(王爱华), Li Lei(李磊), and Zhang Cun-Lin(张存林) Transient optical modulation properties in the terahertz metamaterial of split ring resonators 2012 Chin. Phys. B 21 058701

[1] Wang G Q, Wang J G, Tong C J, Li X Z and Wang X F 2011 Acta Phys. Sin. 60 030702 (in Chinese)
[2] Guo Z, Fan F, Bai J J, Niu C and Chang S J 2011 Acta Phys. Sin. 60 074218 (in Chinese)
[3] Hu H F, Cai L K, Bai W L, Zhang J, Wang L N and Song G F 2011 Acta Phys. Sin. 60 014220 (in Chinese)
[4] Yang Y P, Feng H, Pan X C, Wang Y Q and Wang W Z 2011 Acta Phys. Sin. 60 027802 (in Chinese)
[5] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
[6] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[7] Padilla W J, Aronsson M T, Highstrete C, Lee M, Taylor A J and Averitt R D 2007 Phys. Rev. B 75 041102
[8] Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T and Soukoulis C M 2004 Science 306 1351
[9] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
[10] Padilla W J, Taylor A J, Highstrete C, Lee M and Averitt R D 2006 Phys. Rev. Lett. 96 107401
[11] Schurig D, Mock J J and Smith D R 2006 Appl. Phys. Lett. 88 041109
[12] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[13] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1494
[14] Moser H O, Casse B D F, Wilhelmi O and Saw B T 2005 Phys. Rev. Lett. 94 063901
[15] Li L, Zhou Q L, Shi Y L, Zhao D M, Zhang C L, Zhao K, Tian L, Zhao H, Bao R M and Zhao S Q 2011 Acta. Phys. Sin. 60 019503 (in Chinese)
[16] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D and Taylor A J 2009 Nature Photon. 3 148
[17] Paul O, Imhof C, Lägel B, Wolff S, Heinrich J, Höfling S, Forchel A, Zengerle R, Beigang R and Rahm M 2009 Opt. Express 17 819
[18] Manceau J M, Shen N H, Kafesaki M, Soukoulis C M and Tzortzakis S 2010 Appl. Phys. Lett. 96 021111
[19] Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J and Alexander M 1994 Appl. Phys. Lett. 64 1324
[20] Wu Q, Litz M and Zhang X C 1996 Appl. Phys. Lett. 68 2924
[21] Pearce J, Jian Z and Mittleman D M 2008 Opt. Lett. 29 2926
[22] Zhou Q L, Shi Y, Jin B and Zhang C 2008 Appl. Phys. Lett. 93 102103
[23] Beard M C, Turner G M and Schmuttenmaer C A 2000 Phys. Rev. B 62 15764
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[8] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[9] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[10] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[11] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!