CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Implementation of LDA+DMFT with the pseudo-potential-plane-wave method |
Zhao Jian-Zhou(赵建洲)a)b), Zhuang Jia-Ning(庄嘉宁)a), Deng Xiao-Yu(邓小宇)a)c), Bi Yan(毕延) b), Cai Ling-Cang(蔡灵仓)b), Fang Zhong(方忠)a), and Dai Xi(戴希)a)† |
a. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b. National key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
c. Centre de Physicque Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France |
|
|
Abstract We propose an efficient implementation of combining dynamical mean field theory (DMFT) with electronic structural calculation based on the local density approximation (LDA). The pseudo-potential-plane-wave method is used in the LDA part, which enables it to be applied to large systems. The full loop self consistency of the charge density has been reached in our implementation, which allows us to compute the total energy related properties. The procedure of LDA+DMFT is introduced in detail with a complete flow chart. We have also applied our code to study the electronic structure of several typical strong correlated materials, including cerium, americium and NiO. Our results fit quite well with both the experimental data and previous studies.
|
Received: 26 December 2011
Revised: 27 April 2012
Accepted manuscript online:
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00108), the National Natural Science Foundation of China (Grants Nos. 10876042 and 10874158), the Development Foundation of China Academy of Engineering Physics (Grants Nos. 2008A0101001 and 2010A0101001), and the Fund of the Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics (Grant No. 2011-056000-0833F). |
Cite this article:
Zhao Jian-Zhou(赵建洲), Zhuang Jia-Ning(庄嘉宁), Deng Xiao-Yu(邓小宇), Bi Yan(毕延), Cai Ling-Cang(蔡灵仓), Fang Zhong(方忠), and Dai Xi(戴希) Implementation of LDA+DMFT with the pseudo-potential-plane-wave method 2012 Chin. Phys. B 21 057106
|
[1] |
Liu F L, Jiang G, Bai L N and Kong F J 2011 Acta Phys. Sin. 60 037104 (in Chinese)
|
[2] |
Qu N R and Gao F M 2011 Acta Phys. Sin. 60 067102 (in Chinese)
|
[3] |
Wang X Z, Lin L B, He J and Chen J 2011 Acta Phys. Sin. 60 077104 (in Chinese)
|
[4] |
Li X F, Liu Z L, Peng W M and Zhao A K 2011 Acta Phys. Sin. 60 076501 (in Chinese)
|
[5] |
Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
|
[6] |
Lechermann F, Georges A, Poteryaev A, Biermann S, Posternak M, Yamasaki A and Andersen O K 2006 Phys. Rev. B 74 125120
|
[7] |
Anisimov V I, Kozhevnikov A V, Korotin M A, Lukoyanov A V and Khafizullin D A 2007 J. Phys.: Condens. Matter 19 106206
|
[8] |
Savrasov S Y and Kotliar G 2004 Phys. Rev. B 69 245101
|
[9] |
Min醨 J, Chioncel L, Perlov A, Ebert H, Katsnelson M and Lichtenstein A 2005 Phys. Rev. B 72 045125
|
[10] |
Pourovskii L V, Amadon B, Biermann S and Georges A 2007 Phys. Rev. B 76 235101
|
[11] |
Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107
|
[12] |
Andersen O K 1975 Phys. Rev. B 12 3060
|
[13] |
Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767
|
[14] |
Lichtenstein A I and Katsnelson M I 1998 Phys. Rev. B 57 6884
|
[15] |
Savrasov S Y, Kotliar G and Abrahams E 2001 Nature 410 793
|
[16] |
Andersen O K and Saha-Dasgupta T 2000 Phys. Rev. B 62 R16219
|
[17] |
Anisimov V I, Kondakov D E, Kozhevnikov A V, Nekrasov I A, Pchelkina Z V, Allen J W, Mo S K, Kim H D, Metcalf P, Suga S, Sekiyama A, Keller G, Leonov I, Ren X and Vollhardt D 2005 Phys. Rev. B 71 125119
|
[18] |
Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
|
[19] |
Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
|
[20] |
Amadon B, Lechermann F, Georges A, Jollet F, Wehling T O and Lichtenstein A I 2008 Phys. Rev. B 77 205112
|
[21] |
Trimarchi G, Leonov I, Binggeli N, Korotin Dm and Anisimov V I 2008 J. Phys.: Condens. Matter 20 135227
|
[22] |
Korotin D M, Kozhevnikov A V, Skornyakov S L, Leonov I, Binggeli N, Anisimov V I and Trimarchi G 2008 Eur. Phys. J. B 98 91
|
[23] |
Vanderbilt D 1996 Phys. Rev. B 41 7892
|
[24] |
Hamann D R, Schl黷er M and Chiang C 1979 Phys. Rev. Lett. 43 1494
|
[25] |
Held K 2007 Advances in Physics 56 829
|
[26] |
Savrasov S Y, Haule K and Kotliar G 2006 Phys. Rev. Lett. 96 036404
|
[27] |
Amadon B, Biermann S, Georges A and Aryasetiawan F 2006 Phys. Rev. Lett. 96 066402
|
[28] |
Tian M F, Deng X Y, Fang Z and Dai X 2001 Phys. Rev. B 84 205124
|
[29] |
Haule K, Oudovenko V, Savrasov S Y and Kotliar G 2005 Phys. Rev. Lett. 94 036401
|
[30] |
Amadon B 2011 arXiv:1101.0539
|
[31] |
Jeong I K, Darling T W, Graf M J, Proffen Th, Heffner R H, Lee Y, Vogt T and Jorgensen J D 2004 Phys. Rev. Lett. 92 105702
|
[32] |
Decremps F, Antonangeli D, Amadon B and Schmerber G 2009 Phys. Rev. B 80 132103
|
[33] |
Huang L and Chen C A 2007 J. Phys.: Condens. Matter 2007 19 476206
|
[34] |
Amadon B, Jollet F and Torrent M 2008 Phys. Rev. B 77 155104
|
[35] |
Wuilloud E, Moser H R, Schneider W D and Baer Y 1983 Phys. Rev. B 28 7354
|
[36] |
Wieliczka D, Weaver J H, Lynch D W and Olson C G 1982 Phys. Rev. B 26 7056
|
[37] |
Moore K T and van der Laan G 2009 Rev. Mod. Phys. 81 235
|
[38] |
Naegele J R, Manes L, Spirlet J C and M黮ler W 1984 Phys. Rev. Lett. 52 1834
|
[39] |
Heathman S, Haire R G, Le Bihan T, Lindbaum A, Litfin K, M閞esse Y and Libotte H 2000 Phys. Rev. Lett. 85 2961
|
[40] |
Carnall W T and Wybourne B G 1964 J. Chem. Phys. 40 3428
|
[41] |
Lindbaum A, Heathman S, Litfin K, M閞esse Y, Haire R G, Le Bihan T and Libotte H 2001 Phys. Rev. B 63 214101
|
[42] |
Kutepov A and Kutepova S 2004 J. Magn. Magn. Mater. 272 E329
|
[43] |
Ren X, Leonov I, Keller G, Kollar M, Nekrasov I and Vollhardt D 2006 Phys. Rev. B 74 195114
|
[44] |
Kuneš J, Anisimov V I, Lukoyanov A V and Vollhardt D 2007 Phys. Rev. B 75 4
|
[45] |
Sawatzky G and Allen J 1984 Phys. Rev. Lett. 53 2339
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|