Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117502    DOI: 10.1088/1674-1056/ac7858
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment

Zhaokun Dong(董昭昆)1,2, Zhen Wang(王振)2,3, Te Zhang(张特)2,3, Junsen Xiang(项俊森)2,3, Shuai Zhang(张帅)2,3, Lihua Liu(刘丽华)1,†, and Peijie Sun(孙培杰)2,3,4,‡
1 Department of Physics, Beijing Engineering Research Center of Detection and Application for Weak Magnetic field, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We present a comprehensive investigation on CrAlGe and realize that it is an itinerant ferromagnet with strong tunability of the Curie temperature $T_{\rm C}$ and the spontaneous moment $\mu_0$ depending on annealing heat treatment. While the value of $T_{\rm C}$ was previously reported to be 80 K with $\mu_0\approx$ 0.41$\mu_{\rm B}$, in this work the two quantities attain values as high as 170 K and 0.66$\mu_{\rm B}$, respectively. Heat treatment does not cause changes of the lattice parameters and symmetry, but results in a slight narrowing of the Bragg peaks. The strong tunability of the itinerant ferromagnetism indicates significantly tunable hybridization between the Cr 3d electrons and the conduction bands, in agreement with the dominant Cr-Al/Ge bonds of this compound. Further tuning along the same line towards even stronger or weaker itinerant ferromagnetism promises an interesting follow-up to clarify the localized-itinerant duality of the 3d electrons in this compound.
Keywords:  itinerant ferromagnet      localized-itinerant duality      heat treatment      hybridization  
Received:  19 March 2022      Revised:  07 June 2022      Accepted manuscript online:  14 June 2022
PACS:  75.30.-m (Intrinsic properties of magnetically ordered materials)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52088101, 11974389, and 12141002), the National Key Research and Development Program of China (Grant Nos. 2021YFA0718702 and 2017YFA0303100), and the Chinese Academy of Sciences through the Scientific Instrument Developing Project (Grant No. ZDKYYQ20210003), and the Strategic Priority Research Program (Grant No. XDB33000000).
Corresponding Authors:  Lihua Liu, Peijie Sun     E-mail:  lhliu@ustb.edu.cn;pjsun@iphy.ac.cn

Cite this article: 

Zhaokun Dong(董昭昆), Zhen Wang(王振), Te Zhang(张特), Junsen Xiang(项俊森), Shuai Zhang(张帅), Lihua Liu(刘丽华), and Peijie Sun(孙培杰) CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment 2022 Chin. Phys. B 31 117502

[1] Pfleiderer C, Uhlarz M, Hayden S M, Vollmer R, L?fhneysen H V, Bernhoeft N R and Lonzarich G G 2001 Nature 412 58
[2] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[3] Stewart G R 2001 Rev. Mod. Phys. 73 797
[4] Brando M, Belitz D, Grosche F M and Kirkpatrick T R 2016 Rev. Mod. Phys. 88 025006
[5] Yoshinaga S, Mitsui Y, Umetsu R Y and Koyama K 2015 Phys. Procedia 75 918
[6] Yoshinaga S, Mitsui Y, Umetsu R Y, Uwatoko Y and Koyama K 2017 J. Phys.: Conf. Series 868 012018
[7] Khan M U, Brock J A, Provino A, Belfortini C and Manfrinetti P 2017 Phys. Rev. Mater. 1 034402
[8] Kamimura T, Ido H and Shirakawa K 1985 J. Appl. Phys. 57 3255
[9] Rhodes P and Wohlfarth E P 1963 Proc. R. Soc. A 273 247
[10] Masumitsu H, Yoshinaga S, Mitsui Y, Umetsu R Y, Hiroi M, Uwatoko Y and Koyama K 2019 J. Magn. Magn. Mater. 492 165677
[11] Li R, Li F, Fang J, Tong W, Zhang C, Pi L and Zhang Y 2013 J. Alloys Compd. 577 303
[12] Jacko A C, Fj?restad J O and Powell B J 2009 Nat. Phys. 5 422
[13] Blatt F J, Flood D J, Rowe V, Schroeder P A and Cox J E 1967 Phys. Rev. Lett. 18 395
[14] Abadlia L, Gasser F, Khalouk K, Mayoufi M and Gasser J G 2014 Rev. Sci. Instrum. 85 095121
[15] Tsujii N, Nishide A, Hayakawa J and Mori T 2019 Sci. Adv. 5 eaat5935
[16] Sun P, Kumar K R, Lyu M, Wang Z, Xiang J and Zhang W 2021 The Innovation 2 100101
[17] Fukuda Y and Fujii S 2016 J. Alloys Compd. 687 17
[18] Eto S, Fukuda Y, Mitsui Y, Ito M, Koyama K and Fujii S 2019 J. Phys. Soc. Jpn. 88 064709
[1] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[2] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[3] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[4] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[5] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[6] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[7] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[8] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[9] Heat treatment on phase evolution of Bi-2223 precursor powder prepared by spray pyrolysis method
Li-Jun Cui(崔利军), Ping-Xiang Zhang(张平祥), Jin-Shan Li(李金山), Guo Yan(闫果), Yong Feng(冯勇), Xiang-Hong Liu(刘向宏), Jian-Feng Li(李建峰), Xi-Feng Pan(潘熙峰), Fan Yang(杨帆), Sheng-Nan Zhang(张胜楠), Xiao-Bo Ma(马晓波), Guo-Qing Liu(刘国庆). Chin. Phys. B, 2019, 28(4): 047401.
[10] Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2P2
Huan-Cheng Yang(杨焕成), Kai Liu(刘 凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2018, 27(6): 067103.
[11] Optical study on intermediate-valence compounds Yb1-xLuxAl3
J L Lv(吕佳林), J L Luo(雒建林), N L Wang(王楠林). Chin. Phys. B, 2018, 27(1): 017803.
[12] Characteristics and mechanism analysis of Fano resonances in Π-shaped gold nano-trimer
Han-Hua Zhong(钟汉华), Jian-Hong Zhou(周见红), Chen-Jie Gu(顾辰杰), Mian Wang(王勉), Yun-Tuan Fang(方云团), Tian Xu(许田), Jun Zhou(周骏). Chin. Phys. B, 2017, 26(12): 127301.
[13] Enhanced chiral response from the Fabry-Perot cavity coupled meta-surfaces
Ze-Jian Yang(阳泽健), De-Jiao Hu(胡德骄), Fu-Hua Gao(高福华), Yi-Dong Hou(侯宜栋). Chin. Phys. B, 2016, 25(8): 084201.
[14] Preparation and characterization of Sr0.5Ba0.5Nb2O6 glass-ceramic on piezoelectric properties
Shan Jiang(姜珊), Xuan-Ming Wang(王炫明), Jia-Yu Li(李佳宇),Yong Zhang(张勇), Tao Zheng(郑涛), Jing-Wen Lv(吕景文). Chin. Phys. B, 2016, 25(3): 037701.
[15] Landau level transitions in InAs/AlSb/GaSb quantum wells
Wu Xiao-Guang (吴晓光), Pang Mi (庞蜜). Chin. Phys. B, 2015, 24(9): 097301.
No Suggested Reading articles found!