Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 047503    DOI: 10.1088/1674-1056/21/4/047503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of oxygen vacancy location on the electronic structure and spin density of Co-doped rutile TiO2 dilute magnetic semiconductors

Sun Yun-Bin(孙运斌), Zhang Xiang-Qun(张向群), Li Guo-Ke(李国科), and Cheng Zhao-Hua(成昭华)
State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  According to density functional theory (DFT) using the plane wave base and pseudo-potential, we investigate the effects of the specific location of oxygen vacancy (VO) in a (Ti,Co)O6 distorted octahedron on the spin density and magnetic properties of Co-doped rutile TiO2 dilute magnetic semiconductors. Our calculations suggest that the VO location has a significant influence on the magnetic moment of individual Co cations. In the case where two Co atoms are separated far away from each other, when the VO is located at the equatorial site of a Co-contained octahedron, the ground state of the two Co cations is d6(t2g3 ↑,t2g3 ↓) without any magnetic moment. However, if the VO is located at the apical site, these two Co sites have different ground states and magnetic moments. The spin densities are also observed to be modified by the exchange coupling between the Co cations and the location of VO. Some positive spin polarization is induced around the adjacent O ions.
Keywords:  oxygen vacancy      impurity distribution      electronic structure  
Received:  04 October 2011      Revised:  03 November 2011      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  61.72.jd (Vacancies)  
  75.30.Hx (Magnetic impurity interactions)  
  75.10.Lp (Band and itinerant models)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2009CB929201, 2010CB934202, and 2011CB921801) and the National Natural Sciences Foundation of China (Grant Nos. 50931006, 50721001, and 11034004).
Corresponding Authors:  Cheng Zhao-Hua,zhcheng@iphy.ac.cn     E-mail:  zhcheng@iphy.ac.cn

Cite this article: 

Sun Yun-Bin(孙运斌), Zhang Xiang-Qun(张向群), Li Guo-Ke(李国科), and Cheng Zhao-Hua(成昭华) Effects of oxygen vacancy location on the electronic structure and spin density of Co-doped rutile TiO2 dilute magnetic semiconductors 2012 Chin. Phys. B 21 047503

[1] Ohno H 1998 Science 281 951
[2] Fukumura T, Yamada Y, Toyosaki H, Hasegawa T, Koinuma H and Kawasaki M 2004 Appl. Surf. Sci. 223 62
[3] Coey J M D 2006 Curr. Opin. Solid State Mater. Sci. 10 83
[4] Matsumoto Y, Murakami M, Shono T, Matsumoto Y, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S Y and Koinuma1 H 2001 Science 291 854
[5] Hong N H, Sakai J, Prellier W and Hassini A 2003 Appl. Phys. Lett. 83 3129
[6] Shutthanandan V, Thevuthasan S, Heald S M, Droubay T, Engelhard M H, Kaspar T C, McCready D E, Saraf L, Chambers S A, Mun B S, Hamdan N, Nachimuthu P, Taylor B, Sears R P and Sinkovic B 2004 Appl. Phys. Lett. 84 4467
[7] Han G C, Wu Y H, Tay M, Li K B, Guo Z B and Chong T C 2004 J. Magn. Magn. Mater. 268 159
[8] Sangaletti L, Mozzati M C, Galinetto P, Azzoni C B, Speghini A, Bettinelli M and Calestani G 2006 J. Phys.: Condes. Matter 18 7643
[9] Hong N H, Sakai J, Ruyter A and BrizéV 2006 Appl. Phys. Lett. 89 252504
[10] Jiang Y B, Mi W B, Jiang E Y and Bai H L 2009 J. Vac. Sci. Technol. A 27 1172
[11] Geng W T and Kim K S 2003 Phys. Rev. B 68 125203
[12] Yang Z X, Liu G and Wu R Q 2003 Phys. Rev. B 67 060402
[13] Chen J, Rulis P, Ouyang L, Satpathy S and Ching W Y 2006 Phys. Rev. B 74 235207
[14] Rubio-Ponce A, Conde-Gallardo A and Olguin D 2008 Phys. Rev. B 78 035107
[15] Peng H W, Li J B, Li S S and Xia J B 2009 Phys. Rev. B 79 092411
[16] Dietl T, Ohno H, Matsujura F, Cibert J and Ferrand D 2000 Science 287 1019
[17] Kim D H, Yang J S, Kim Y S, Kim D W, Noh T W, Bu S D, Park Y D, Pearton S J, Jo Y and Park J G 2003 Appl. Phys. Lett. 83 4574
[18] Manivannan A, Glaspell G, Dutta P and Seehra MS 2005 J. Appl. Phys. 97 10D325
[19] Pan D Y, Xu G L, Lü L Y, Yong Y, Wang X W, Wang J G, Wang G H and Sui Y X 2006 Appl. Phys. Lett. 89 082510
[20] Griffin K A, Pakhomov A B, Wang C M, Heald S M and Krishnan K M 2005 Phys. Rev. Lett. 94 157204
[21] Park M S, Kwon S K and Min B I 2002 Phys. Rev. B 65 161201(R)
[22] Weng H, Yang X, Dong J, Mizuseki H, Kawasaki M and Kawazoe Y 2004 Phys. Rev. B 69 125219
[23] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[24] Blochl P E 1994 Phys. Rev. B 50 17953
[25] Errico L A, Renter'hia M and Weissmann M 2005 Phys. Rev. B 72 184425
[26] Burdett J K, Hughbanks T, Miller G J, Richardson J W and Smith J V 1987 J. Am. Chem. Soc. 109 3639
[27] Hong N H, Sakai J, Poirot N and Brize V 2006 Phys. Rev. B 73 132404
[28] Pemmaraju C D and Sanvito S 2005 Phys. Rev. Lett. 94 217205
[29] Bouzerar G and Ziman T 2006 Phys. Rev. Lett. 96 207602
[30] Dev P, Xue Y and Zhang P 2008 Phys. Rev. Lett. 100 117204
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[4] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[5] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[8] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[13] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[14] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!