Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 038501    DOI: 10.1088/1674-1056/21/3/038501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire

Yang Yong-Jun(杨拥军), Huang Yong-Jun(黄勇军), Wen Guang-Jun(文光俊), Zhong Jing-Ping(钟靖平), Sun Hai-Bin(孙海斌), and Oghenemuero Gordon
Key Laboratory of Broadband Optical Fiber Transmission & Communication Networks, School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  A tunable broadband metamaterial absorber is demonstrated at microwave frequencies in this paper. The metamaterial absorber is composed of ferrite slabs with large resonance beamwidths and a copper wire. The theoretical analysis for the effective media parameters is presented to show the mechanism for achieving the perfect absorptivity characteristic. The numerical results of transmission, reflectance, and absorptivity indicate that the metamaterial absorber exhibits a near perfect impedance-match to free space and a high absorptivity of 98.2% for one layer and 99.97% for two layers at 9.9 GHz. The bandwidth with the absorptivity above 90% is about 2.3 GHz. Moreover, the absorption band can be shifted linearly in a wide frequency range by adjusting the magnetic bias. This metamaterial absorber opens a way to prepare perfectly matched layers for engineering applications.
Keywords:  broadband metamaterial absorber      tunability      ferrite  
Received:  21 October 2011      Revised:  16 November 2011      Accepted manuscript online: 
PACS:  85.70.Ge (Ferrite and garnet devices)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60571024).
Corresponding Authors:  Huang Yong-Jun,yongjunh@uestc.edu.cn     E-mail:  yongjunh@uestc.edu.cn

Cite this article: 

Yang Yong-Jun(杨拥军), Huang Yong-Jun(黄勇军), Wen Guang-Jun(文光俊), Zhong Jing-Ping(钟靖平), Sun Hai-Bin(孙海斌), and Oghenemuero Gordon Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire 2012 Chin. Phys. B 21 038501

[1] Schurig D, Mock J J and Smith D R 2006 Appl. Phys. Lett. 88 041109
[2] Padilla W J, Aronsson M T, Highstrete C, Lee M A, Taylor J and Averitt R D 2007 Phys. Rev. B 75 041102
[3] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[4] Maier T and Brueckl H 2010 Opt. Lett. 35 3766
[5] Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J and Jiang T 2009 Chin. Phys. Lett. 26 114102
[6] Zhu B, Wang Z, Huang C, Feng Y, Zhao J and Jiang T 2010 PIER 101 231
[7] Zhu W R, Zhao X P, Bao S and Zhang Y P 2010 Chin. Phys. Lett. 27 014204
[8] Zhu W R and Zhao X P 2010 Eur. Phys. J. Appl. Phys. 50 21101
[9] Hu C G, Li X, Feng Q, Chen X N and Luo X G 2010 Opt. Express 18 6598
[10] Alici K B, Bilotti F, Vegni L and Ozbay E 2010 J. Appl. Phys. 108 083113
[11] Cheng Y and Yang H 2010 J. Appl. Phys. 108 034906
[12] Cheng Y, Yang H, Cheng Z and Wu N 2011 Appl. Phys. A 102 99
[13] Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D and Lin B Q 2010 Chin. Phys. Lett. 27 117802
[14] Gu C, Qu S B, Pei Z B and Xu Z 2011 Chin. Phys. B 20 037801
[15] Xu Y Q, Zhou P H, Zhang H B, Chen L and Deng L J 2011 J. Appl. Phys. 110 044102
[16] Luo H, Wang T, Gong R Z, Nie Y and Wang X 2011 Chin. Phys. Lett. 28 034204
[17] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
[18] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
[19] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[20] Grant J, Ma Y, Saha S, Lok L B, Khalid A and Cumming D R S 2011 it Opt. Lett. 36 1524
[21] Zhu W and Zhao X 2009 J. Opt. Soc. Am. B 26 2382
[22] Zhu W, Zhao X, Gong B, Liu L and Su B 2011 Appl. Phys. A 102 147
[23] Gong Y, Li Z, Fu J, Chen Y, Wang G, Lu H, Wang L and Liu X 2011 it Opt. Express 19 10193
[24] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
[25] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
[26] Li M H, Yang H L, Hou X W, Tian Y and Hou D Y 2010 PIER 108 37
[27] He X J, Wang Y, Wang J M, Gui T L and Wu Q 2011 PIER 115 381
[28] Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Cumming D R S 2011 Opt. Lett. 36 945
[29] Gu C, Qu S B, Pei Z B, Xu Z, Liu J and Gu W 2011 Chin. Phys. B 20 017801
[30] Huang L and Chen H 2011 PIER 113 103
[31] Luo H, Cheng Y Z and Gong R Z 2011 Eur. Phys. J. B 81 387
[32] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q and Cui T J 2011 J. Appl. Phys. 110 014909
[33] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X and Li H 2011 it Opt. Express 19 9401
[34] Bao S, Luo C R, Zhang Y P and Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese)
[35] Dewar G 2005 New J. Phys. 7 161
[36] Cai X M, Zhou X M and Hu G K 2006 Chin. Phys. Lett. 23 348
[37] Rachford F J, Armstead D N, Harris V G and Vittoria C 2007 it Phys. Rev. Lett. 99 057202
[38] Zhao H J, Zhou J, Zhao Q, Li B, Kang L and Bai Y 2007 Appl. Phys. Lett. 91 131107
[39] He Y X, He P, Yoon S D, Parimi P V, Rachford F J, Harris V G and Vittoria C 2007 J. Magn. Magn. Mater. 313 187
[40] Huang Y J, Wen G J, Li T Q and Xie K 2010 J. Electrom. Anal. Appl. 2 104
[41] Huang Y J, Wen G J, Li T Q and Xie K 2010 Appl. Comput. Electrom. Soc. J. 25 696
[42] Huang Y J, Wen G J, Li T Q, Yang Y J and Xie K 2012 Appl. Phys. A 106 79
[43] Lax B and Button K J 1962 Microwave Ferrites and Ferrimagnetics (New York: McGraw-Hill)
[44] Pozar D M 2005 Microwave Engineering (3rd Edn.) (New York: John Wiley & Sons, Inc) Chap. 9
[45] Yang Q H, Zhang H W, Liu Y L, Wen Q Y and Zha J 2008 Chin. Phys. Lett. 25 3957
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[3] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[6] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[7] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[8] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[9] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[10] Effect of external electric field on crystalline structure anddielectric properties of Bi1.5MgNb1.5O7 thin films
Zhongzhe Liu(刘钟喆), Libin Gao(高莉彬), Kexin Liang(梁可欣), Zhen Fang(方针), Hongwei Chen(陈宏伟), and Jihua Zhang(张继华). Chin. Phys. B, 2021, 30(10): 107703.
[11] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[12] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[13] Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route
Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani. Chin. Phys. B, 2019, 28(8): 088701.
[14] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[15] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
No Suggested Reading articles found!