Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 027502    DOI: 10.1088/1674-1056/21/2/027502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin waves in the block checkerboard antiferromagnetic phase

Lu Feng(卢峰) and Dai Xi(戴希)
Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Motivated by the discovery of a new family of 122 iron-based superconductors, we present the theoretical results on the ground state phase diagram, spin wave, and dynamic structure factor obtained from the extended J1-J2 Heisenberg model. In the reasonable physical parameter region of K2Fe4Se5, we find that the block checkerboard antiferromagnetic order phase is stable. There are two acoustic spin wave branches and six optical spin wave branches in the block checkerboard antiferromagnetic phase, which have analytic expressions at the high-symmetry points. To further compare the experimental data on neutron scattering, we investigate the saddlepoint structure of the magnetic excitation spectrum and the inelastic neutron scattering pattern based on linear spin wave theory.
Keywords:  spin wave      phase diagram      superconductivity  
Received:  29 March 2011      Revised:  27 October 2011      Accepted manuscript online: 
PACS:  75.30.Ds (Spin waves)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.20.Mn (Nonconventional mechanisms)  
Fund: Project supported by the Science Foundation for Post-Doctorate Research from the Ministry of Science and Technology of China (Grant No. 20100470589), the National Basic Research Program of China (Grant No. 2007CB925000), and the National Natural Science Foundation of China (Grant No. 51071032).
Corresponding Authors:  Lu Feng,lufeng_china@126.com     E-mail:  lufeng_china@126.com

Cite this article: 

Lu Feng(卢峰) and Dai Xi(戴希) Spin waves in the block checkerboard antiferromagnetic phase 2012 Chin. Phys. B 21 027502

[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Ma L, Huang A Q and Li J 2011 Chin. Phys. B 20 037104
[3] Bednorz J G and Muller K A 1986 Z. Phys. B 64 189
[4] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[5] Chen G F 2008 Phys. Rev. Lett. 101 057007
[6] Lei H, Wang K F, Warren J B and Petrovic C 2011 Phys. Rev. Lett. 107 137002
[7] Yang S, You W L, Gu S J and Lin H Q 2009 Chin. Phys. B bf 18 2545
[8] Kondo T, Santander-Syro A F, Copie O, Liu C, Tillman M E, Mun E D, Schmalian J, Budko S L, Tanatar M A, Canfield P C and Kaminski A 2008 Phys. Rev. Lett. 101 147003
[9] Wray L, Qian D, Hsieh D, Xia Y, Li L, Checkelsky J G, Pasupathy A, Gomes K K, Parker C V, Fedorov A V, Chen G F, Luo J L, Yazdani A, Ong N P, Wang N L and Hasan M Z 2008 Phys. Rev. B 78 184508
[10] Xu G, Zhang H J, Dai X and Fang Z 2008 Europys. Lett. 84 67015
[11] Borisenko S V, Zabolotnyy V B, Evtushinsky D V, Kim T K, Morozov I V, Yaresko A N, Kordyuk A A, Behr G, Vasiliev A, Follath R and Bhner B 2010 Phys. Rev. Lett. 105 067002
[12] Khasanov R, Bendele M, Amato A, Conder K, Keller H, Klauss H H, Luetkens H and Pomjakushina E 2010 Phys. Rev. Lett. 104 087004
[13] Guo J, Chen X J, Zhang C, Guo J G, Chen X L, Wu Q, Gu D C, Gao P W, Dai X, Yang L H, Mao H K, Sun L L and Zhao Z X 2011 arXiv/: 1101.0092
[14] Kawasaki Y, Mizuguchi Y, Deguchi K, Watanabe T, Ozaki T, Tsuda S, Yamaguchi T, Takeya H and Takano Y 2011 arXiv/: 1101.0896
[15] Ying J J, Wang X F, Luo X G, Li Z Y, Yan Y J, Zhang M, Wang A F, Cheng P, Ye G J, Xiang Z J, Liu R H and Chen X H 2011 New J. Phys. 13 033008
[16] Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H and Conder K 2010 J. Phys.: Condens. Matter 23 052203
[17] Ying J J, Wang X F, Luo X G, Wang A F, Zhang M, Yan Y J, Xiang Z J, Liu R H, Cheng P, Ye G J and Chen X H 2011 Phys. Rev. B 83 212502
[18] Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J and Chen X H 2011 Phys. Rev. B 83 060512
[19] Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 Europys. Lett. 94 27009
[20] Wang H D, Dong C H, Li Z J, Zhu S S, Mao Q H, Feng C M, Yuan H Q and Fang M H 2011 Europys. Lett. 93 47004
[21] Bao W, Huang Q, Chen G F, Green M A, Wang D M, He J B, Wang X Q and Qiu Y 2011 Chin. Phys. Lett. 28 086104
[22] Ye F, Chi S, Bao W, Wang X F, Ying J J, Chen X H, Wang H D, Dong C H and Fang M H 2011 Phys. Rev. Lett. 107 137003
[23] Bao W, Li G N, Huang Q, Chen G F, He J B, Green M A, Qiu Y, Wang D M, Luo J L and Wu M M 2011 arXiv/: 1102.3674
[24] Yan X W, Gao M, Lu Z Y and Xiang T 2011 Phys. Rev. B 83 233205
[25] Cao C and Dai J 2011 Phys. Rev. Lett. 107 056401
[26] You Y Z, Yao H and Lee D H 2011 Phys. Rev. B 84 020406
[27] Fang C, Xu B, Dai P C, Xiang T and Hu J P 2011 arXiv/: 1103.4599
[28] Zhang G M, Lu Z Y and Xiang T 2011 Phys. Rev. B 84 052502
[29] Auerbach A 1994 Phys. Rev. Lett. 72 2931
[30] Carlson E W, Yao D X and Campbell D K 2004 Phys. Rev. B 70 064505
[31] Yao D X, Carlson E W and Campbell D K 2006 Phys. Rev. Lett. 97 017003
[32] Xiao M W 2009 arXiv/: 0908.0787
[33] Hemmen J L V 1980 Z. Phys. B 38 271
[34] Lu H X and Zhang Y D 2000 Int. J. Theor. Phys. 39 2
[35] Tsallis C 1978 J. Math. Phys. 19 277
[36] Colpa J H P 1978 Physica A 93 327
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[6] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[7] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[10] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[11] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[12] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[13] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[14] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[15] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
No Suggested Reading articles found!