Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 128502    DOI: 10.1088/1674-1056/21/12/128502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Investigation of inhomogeneous barrier height of Au/Bi4Ti3O12/n-Si structure through Gaussian distribution of barrier height

M. Gökcen, M. Yildirim
Department of Physics, Faculty of Arts and Sciences, Düzce University, Düzce, Turkey
Abstract  Au/Bi4Ti3O12/n-Si structure is fabricated in order to investigate its current-voltage (I-V) characteristics in a temperature range of 300 K-400 K. Obtained I-V data are evaluated by thermionic emission (TE) theory. Zero-bias barrier height (ΦB0) and ideality factor (n) calculated from I-V characteristics, are found to be temperature-dependent such that ΦB0 increases with temperature increasing, whereas n decreases. Obtained temperature dependence of ΦB0 and linearity in ΦB0 versus n plot, together with lower barrier height and Richardson constant values obtained from Richardson plot, indicate that the barrier height of the structure is inhomogeneous in nature. Therefore, I-V characteristics are explained on the basis of Gaussian distribution of barrier height.
Keywords:  Bi4Ti3O12      I-V characterization      temperature dependence      Gaussian distribution  
Received:  19 June 2012      Revised:  24 July 2012      Accepted manuscript online: 
PACS:  85.30.Hi (Surface barrier, boundary, and point contact devices)  
  85.30.Kk (Junction diodes)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  73.40.-c (Electronic transport in interface structures)  
Fund: Project supported by the Düzce University Scientific Research Project (Grant Nos. 2010.05.02.056 and 2012.05.02.110).
Corresponding Authors:  M. Gökcen     E-mail:  muharremgokcen@duzce.edu.tr

Cite this article: 

M. Gökcen, M. Yildirim Investigation of inhomogeneous barrier height of Au/Bi4Ti3O12/n-Si structure through Gaussian distribution of barrier height 2012 Chin. Phys. B 21 128502

[1] Alti ndal S, Parlaktürk F, Tataroğlu A, Parlak M, Sarmasov S N and Agasiev A A 2008 Vacuum 82 1246
[2] Yang C H, Wang S D and Yang D M 2009 J. Alloys Compd. 467 434
[3] Han J P and Ma T P 1998 Appl. Phys. Lett. 72 1185
[4] Wu D, Li A and Ming N 2003 Microelectron. Eng. 66 773
[5] Sugibuchi K, Kurogi Y and Endo N 1975 J. Appl. Phys. 46 2877
[6] Debasis D, Tanmay G K and Panchanan P 2007 Solid State Sci. 9 57
[7] Tellier J, Boullay P, Jennet D B and Mercurio D 2008 Solid State Sci. 10 177
[8] Vural Ö, Safak Y, Alti ndal S and Türüt A 2010 Curr. Appl. Phys. 10 761
[9] Roul B, Bhat T N, Kumar M, Rajpalke M K, Sinha N, Kalghatgi A T and Krupanidhi S B 2011 Solid State Commun. 151 1420
[10] Altuntas H, Bengi A, Aydemir U, Asar T, Cetin S S, Kars Î, Alti ndal S and Özcelik S 2009 Mater. Sci. Semicond. Proc. 12 224
[11] Pakma O, Serin N, Serin T and Alti ndal S 2008 Semicond. Sci. Technol. 23 105014
[12] Tataroğlu A and Alti ndal S 2009 J. Alloys Compd. 479 893.
[13] Chand S and Kumar J 1996 Appl. Phys. A: Mater. 63 171
[14] Demirezen S and Alti ndal S 2010 Curr. Appl. Phys. 10 1188
[15] Dökme Ī and Alti ndal S 2006 Semicond. Sci. Technol. 21 1053
[16] Tung R T 1992 Phys. Rev. B 45 13509.
[17] Gümüs A, Türüt A and Yalci n N 2002 J. Appl. Phys. 91 245
[18] Werner J H and Guttler H H 1991 J. Appl. Phys. 69 1522.
[19] Wang Y H, Zhang Y M, Zhang Y M, Song Q W and Jia R X 2011 Chin. Phys. B 20 087305
[20] Ru G P, Yu R, Jiang Y L and Ruan G 2010 Chin. Phys. B 19 097304
[21] Altuntas H, Alti ndal S, Shtrikman H and Özcelik S 2009 Microelectron. Reliab. 49 904
[22] Chand S and Kumar J 1996 Semicond. Sci. Technol. 11 1203
[23] Gökcen M, Tunc T, Alti ndal S and Uslu Ī 2012 Mater. Sci. Eng. B: Adv. 177 416
[24] Gökcen M, Tunc T, Alti ndal S and Uslu Ī 2012 Curr. Appl. Phys. 12 525
[25] Gökcen M, Alti ndal S, Karaman M and Aydemir U 2011 Physica B 406 4119
[26] Card H C and Rhoderick E H 1971 J. Phys. D: Appl. Phys. 4 1589
[27] Schmitsdorf R F, Kampen T U and Mönch W 1995 Surf. Sci. 324 349
[28] Chung G S, Kim K S and Yakuphanoğlu F 2010 J. Alloys Compd. 507 508
[1] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[2] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[3] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[4] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[5] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[6] Electrical analysis of inter-growth structured Bi4Ti3O12–Na0.5Bi4.5Ti4O15 ceramics
Xiangping Jiang(江向平), Yalin Jiang(江亚林), Xingan Jiang(江兴安), Chao Chen(陈超), Na Tu(涂娜), Yunjing Chen(陈云婧). Chin. Phys. B, 2017, 26(7): 077701.
[7] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[8] Extraction of temperature dependences of small-signal model parameters in SiGe HBT HICUM model
Ya-Bin Sun(孙亚宾), Jun Fu(付军), Yu-Dong Wang(王玉东), Wei Zhou(周卫), Wei Zhang(张伟), and Zhi-Hong Liu(刘志弘). Chin. Phys. B, 2016, 25(4): 048501.
[9] Effect of combined platinum and electron on the temperature dependence of forward voltage in fast recovery diode
Jia Yun-Peng (贾云鹏), Zhao Bao (赵豹), Yang Fei (杨霏), Wu Yu (吴郁), Zhou Xuan (周璇), Li Zhe (李哲), Tan Jian (谭健). Chin. Phys. B, 2015, 24(12): 126104.
[10] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[11] Temperature dependence of the photothermal laser cooling efficiency for a micro-cantilever
Ding Li-Ping (丁丽萍), Mao Tian-Hua (毛添华), Fu Hao (付号), Cao Geng-Yu (曹更玉). Chin. Phys. B, 2014, 23(10): 107801.
[12] Temperature dependence of single event transient in 90-nm CMOS dual-well and triple-well NMOSFETs
Li Da-Wei (李达维), Qin Jun-Rui (秦军瑞), Chen Shu-Ming (陈书明). Chin. Phys. B, 2013, 22(2): 029401.
[13] An improved deconvolution method for X-ray coded imaging in inertial confinement fusion
Zhao Zong-Qing (赵宗清), He Wei-Hua (何卫华), Wang Jian (王剑), Hao Yi-Dan (郝轶丹), Cao Lei-Feng (曹磊峰), Gu Yu-Qiu (谷渝秋), Zhang Bao-Han (张保汉). Chin. Phys. B, 2013, 22(10): 104202.
[14] Parasitic bipolar amplification in single event transient and its temperature dependence
Liu Zheng (刘征), Chen Shu-Ming (陈书明), Chen Jian-Jun (陈建军), Qin Jun-Rui (秦军瑞), Liu Rong-Rong (刘蓉容). Chin. Phys. B, 2012, 21(9): 099401.
[15] Temperature and drain bias dependence of single event transient in 25-nm FinFET technology
Qin Jun-Rui (秦军瑞), Chen Shu-Ming (陈书明), Li Da-Wei (李达维), Liang Bin (梁斌), Liu Bi-Wei (刘必慰 ). Chin. Phys. B, 2012, 21(8): 089401.
No Suggested Reading articles found!