ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Harmonic and attosecond pulse enhancement in the presence of noise |
Feng Li-Qiang (冯立强)a, Chu Tian-Shu (楚天舒)a b |
a State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; b Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China |
|
|
Abstract In this paper, we theoretically investigate the effect of noise on the photoionization, the generations of the high-order harmonic and the attosecond pulse irradiated from a model He+ ion. It shows that by properly adding the noise fields, such as the Gaussian white noise, the random light or the colour noise, both the ionization probabilities (IPs) and the harmonic yields can be enhanced by several orders of magnitude. Further, by tuning the noise intensity, a stochastic resonancelike curve is observed, showing the existence of an optimal noise in the ionization enhancement process. Finally, by superposing a properly selected harmonic, an intense attosecond pulse with a duration of 67 as is directly generated.
|
Received: 13 April 2012
Revised: 08 May 2012
Accepted manuscript online:
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 10874096 and 20633070). |
Corresponding Authors:
Chu Tian-Shu
E-mail: tschu@dicp.ac.cn;tschu008@163.com
|
Cite this article:
Feng Li-Qiang (冯立强), Chu Tian-Shu (楚天舒) Harmonic and attosecond pulse enhancement in the presence of noise 2012 Chin. Phys. B 21 124204
|
[1] |
Agostini P and DiMauro L 2004 Rep. Prog. Phys. 67 813
|
[2] |
Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
|
[3] |
Kaplan A E 1994 Phys. Rev. Lett. 73 1243
|
[4] |
Lee K, Cha Y H, Shin M S, Kim B H and Kim D 2003 Phys. Rev. E 67 026502
|
[5] |
Pfeifer T, Gallmann L, Abel M J, Nagel P M, Neumark D M and Leone S R 2006 Phys. Rev. Lett. 97 163901
|
[6] |
Yun C X, Teng H, Zhang W, Zhan M J, Han H N, Zhong X, Wei Z Y, Wang B B and Hou X 2010 Chin. Phys. B 19 124210
|
[7] |
Lu R F, He H X, Guo Y H and Han K L 2009 J. Phys. B: At. Mol. Opt. Phys. 42 225601
|
[8] |
Feng L Q and Chu T S 2011 Phys. Lett. A 375 3641
|
[9] |
Wu J, Zhai Z and Liu X S 2010 Chin. Phys. B 19 093201
|
[10] |
Zhou Z Y and Yan J M 2008 Chin. Phys. B 17 4523
|
[11] |
Zeng Z, Cheng Y, Song X, Li R and Xu Z 2007 Phys. Rev. Lett. 98 203901
|
[12] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[13] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
[14] |
Strelkov V V, Sterjantov A F, Shubin N Y and Platonenko V T 2006 J. Phys. B: At. Mol. Opt. Phys. 39 577
|
[15] |
Gauthey F I, Keitel C H, Knight P L and Maquet A 1995 Phys. Rev. A 52 525
|
[16] |
Li P C, Zhou X X, Wang G L and Zhao Z X 2009 Phys. Rev. A 80 053825
|
[17] |
Zhang G T and Liu X S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125603
|
[18] |
Feng L Q and Chu T S 2012 Phys. Lett. A 376 1523
|
[19] |
Ishikawa K 2003 Phys. Rev. Lett. 91 043002
|
[20] |
Zhang G T, Wu J, Xia C L and Liu X S 2009 Phys. Rev. A 80 055404
|
[21] |
Singh K P and Rost J M 2007 Phys. Rev. A 76 063403
|
[22] |
Singh K P and Rost J M 2007 Phys. Rev. Lett. 98 160201
|
[23] |
Feng L Q and Chu T S 2012 J. Electron. Spectrosc. Relat. Phenom. 185 39
|
[24] |
Feng L Q and Chu T S 2012 J. Chem. Phys. 136 054102
|
[25] |
Feng L Q and Chu T S 2011 Phys. Rev. A 84 053853
|
[26] |
Lu R F, Zhang P Y and Han K L 2008 Phys. Rev. E 77 066701
|
[27] |
Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
|
[28] |
Hu J, Wang M S, Han K L and He G Z 2006 Phys. Rev. A 74 063417
|
[29] |
Zhang H, Han K L, Zhao Y, He G Z and Lou N Q 1997 Chem. Phys. Lett. 271 204
|
[30] |
Hu J, Meng Q T and Han K L 2007 Chem. Phys Lett. 442 17
|
[31] |
Meng Q T, Yang G H, Sun H L, Han K L and Lou N Q 2003 Phys. Rev. A 67 063202
|
[32] |
Guo Y H, Lu R F, Han K L and He G Z 2009 Int. J. Quantum Chem. 109 3410
|
[33] |
Zhang H, Han K L, He G Z and Lou N Q 1998 Chem. Phys. Lett. 289 494
|
[34] |
Meng Q T, Yang G H and Han K L 2003 Int. J. Quantum Chem. 95 30
|
[35] |
Fox R F, Gatland I R, Roy R and Vemuri G 1988 Phys. Rev. A 38 5938
|
[36] |
Mairesse Y, Bohan A D, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P and Saliéres P 2003 Science 302 1540
|
[37] |
Carrera J J, Tong X M and Chu S I 2006 Phys. Rev. A 74 023404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|