Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 123101    DOI: 10.1088/1674-1056/21/12/123101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First-principles study of the electronic structure and optical properties of defect chalcopyrite CdGa2Te4

Jiao Zhao-Yong (焦照勇), Guo Yong-Liang (郭永亮), Zhang Xian-Zhou (张现周), Ma Shu-Hong (马淑红)
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first-principles calculations. The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound. The optical properties, including complex dielectric function, absorption coefficient, refractive index, reflectivity, and loss function, and the origin of spectral peaks are analysed based on the electronic structures. The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.
Keywords:  defect chalcopyrite CdGa2Te4      electronic structure      optical properties      first-principles calculation  
Received:  31 March 2012      Revised:  14 May 2012      Accepted manuscript online: 
PACS:  31.15.E-  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: Project supported by the Foundation for Key Program of Ministry of Education, China (Grant No. 212104) and the Foundation for University Young Core Instructors of Henan Province, China (Grant No. 2010GGJS-066).
Corresponding Authors:  Jiao Zhao-Yong     E-mail:  zhy_jiao@htu.cn;xz-zhang@htu.cn

Cite this article: 

Jiao Zhao-Yong (焦照勇), Guo Yong-Liang (郭永亮), Zhang Xian-Zhou (张现周), Ma Shu-Hong (马淑红) First-principles study of the electronic structure and optical properties of defect chalcopyrite CdGa2Te4 2012 Chin. Phys. B 21 123101

[1] Georgobiani A N, Radautsan S I and Tiginyanu I M 1985 Sov. Phys. Semicond. 19 121
[2] Jiang X S and Lambrecht W R L 2004 Phys. Rev. B 69 035201
[3] Manjón F J, Gomis O, Rodríguez-Hernández P, Pérez-González E, Muñoz A, Errandonea D, Ruiz-Fuertes J, Segura A, Fuentes-Cabrera M, Tiginyanu I M and Ursaki V V 2010 Phys. Rev. B 104 063524
[4] Errandonea D, Kumar R S, Manjón F J, Ursaki V V and Tiginyanu I M 2008 J. Appl. Phys. 104 063524
[5] Lavrentyev A A, Gabrelian B V, Nikiforov I Ya, Parasyuk O V and Khyzhun O Yu 2009 J. Alloys Compd. 481 28
[6] Grzechnik A, Ursaki V V, Syassen K, Loa I, Tiginyanu I M and Hanfland M 2001 J. Solid State Chem. 160 205
[7] Jiang X S, Yan Y C, Yuan S M, Mi S, Niu Z G and Liang J Q 2010 Chin. Phys. B 19 107104
[8] Ma S H, Jiao Z Y and Zhang X Z 2012 J. Mater. Sci. 47 3849
[9] Jiang X S, Mi S, Sun P J, Lu Y and Liang J Q 2009 Chin. Phys. Lett. 26 077102
[10] Ozaki S, Muto K and Adachi S 2003 J. Phys. Chem. Solids 64 1935
[11] Ozaki S, Muto K, Nagata H and Adachi S 2005 J. Appl. Phys. 97 043507
[12] Sasaki M, Ozaki S and Adachi S 2005 Phys. Rev. B 72 045218
[13] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[14] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[15] Vanderbilt D 1990 Phys. Rev. B 41 7892
[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5189
[18] Hahn H, Frank G, klingler W, Störger A D and Störger G 1955 Anorg Z Allg. Chem. 279 241
[19] Godby R W, Schlüter M and Sham L J 1988 Phys. Rev. B 37 10159
[20] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390
[21] Li D and Zhang X H 2011 Chin. Phys. B 20 126102
[22] Reshak A H, Atuchin V V, Auluck S and Kityk I V 2008 J. Phys.: Condens. Matter 20 325234
[23] Nikolić P M and Stojilković S 1981 J. Phys. C 14 L551
[24] Fox M 2001 Optical Properties of Solids (New York: Oxford University Press) p. 12
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!