Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 123102    DOI: 10.1088/1674-1056/21/12/123102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study of potential energy curves, spectroscopic constants, and radiative lifetimes of low-lying states in SeO molecule

Li Rui (李瑞)a b, Lian Ke-Yan (连科研)a, Li Qi-Nan (李奇楠)b, Miao Feng-Juan (苗凤娟)c, Yan Bing (闫冰)a, Jin Ming-Xing (金明星)a
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
b Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China;
c College of Communications and Electronics Engineering, Qiqihar University, Qiqihar 161006, China
Abstract  The low-lying potential energy curves of SeO molecule are computed by means of ab initio multireference configuration interaction technique, taking into account relativistic (scalar plus spin-orbit coupling) effects. The spectroscopic constants of Ω states for X3Σ-, a1Δ, b1Σ+, A3Π, A'3Δ, and A"3Σ+ states are obtained, and they are in good accordance with available experimental values. The Franck-Condon factors and transition dipole moments to the ground state are computed, and the natural radiative lifetimes of low-lying Ω states are theoretically obtained. Comparisons of the natural lifetimes of Ω states with previous experimental results and those of isovalent TeO molecule are made.
Keywords:  potential energy curves      spin-orbit coupling      lifetime      SeO molecule  
Received:  03 April 2012      Revised:  20 June 2012      Accepted manuscript online: 
PACS:  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2010GB104003), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 200903369 and 201103255), the Natural Science Foundation of Heilongjiang Province, China (Grant No. QC2011C092), and the Program for Young Teacher's Scientific Research in Qiqihar University, China (Grant Nos. 2010K-Z05 and 2010K-M31).
Corresponding Authors:  Yan Bing     E-mail:  yanbing@jlu.edu.cn

Cite this article: 

Li Rui (李瑞), Lian Ke-Yan (连科研), Li Qi-Nan (李奇楠), Miao Feng-Juan (苗凤娟), Yan Bing (闫冰), Jin Ming-Xing (金明星) Theoretical study of potential energy curves, spectroscopic constants, and radiative lifetimes of low-lying states in SeO molecule 2012 Chin. Phys. B 21 123102

[1] Burling F T and Goldstein B M 1992 J. Am. Chem. Soc. 114 2313
[2] Yan B, Pan S and Guo Q Q 2008 Chin. Phys. B 17 3318
[3] Lee E P F, Mok D K W, Chau F and Dyke J M 2004 J. Chem. Phys. 121 2962
[4] Fink E, Setzer K, Ramsay D and Vervloet M 1987 J. Mol. Spectrosc. 125 66
[5] Winter R, Barnes I, Fink E H, Wildt J and Zabel F 1980 Chem. Phys. Lett. 73 297
[6] Fan Q C, Sun W G, Li H D and Feng H 2012 Chin. Phys. B 21 023301
[7] Zheng T, Qin J M, Jiang D Y, Lü J W and Xiao S C 2012 Chin. Phys. B 21 043302
[8] Reddy S and Verma K 1980 J. Mol. Spectrosc. 84 89
[9] Matsushita T, Klotz R, Marian C M and Peyerimhoff S D 1987 Mol. Phys. 62 1385
[10] Chattopadhyaya S, Nath A and Das K K 2012 Spectrochim. Acta Part A 89 160
[11] Werner H J, Knowles P J, Lindh R, Manby F R, SchÄutz M and others MOLPRO-A Package of Ab Initio Programs (version 2010.1) http://www.molpro.net
[12] Stoll H, Metz B and Dolg M 2002 J. Comput. Chem. 23 767
[13] Bergner A, Dolg M, Küchle W, Stoll H and Preuβ H 1993 Mol. Phys. 80 1431
[14] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[15] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[16] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[17] Le Roy R J 2002 LEVEL 7.5-A Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels University of Waterloo, Chemical Physics Research Report CP-655
[18] Carrington A, Currie G N, Levy D H and Miller T A 1969 Mol. Phys. 17 535
[19] Barrow R F and Lemanczyk R Z 1975 Can. J. Phys. 53 553
[20] Rai-Constapel V, Liebermann H P, Buenker R J and Rai S N 2006 J. Phys. Chem. A 110 404
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[7] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[8] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[9] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[10] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[11] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[12] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[13] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[14] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[15] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
No Suggested Reading articles found!