Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120205    DOI: 10.1088/1674-1056/21/12/120205
GENERAL Prev   Next  

Asymptotic solving method for period solution to a class of disturbed nonlinear evolution equation

Yao Jing-Sun (姚静荪)a, Lin Wan-Tao (林万涛)b, Du Zeng-Ji (杜增吉)c, Mo Jia-Qi (莫嘉琪)a
a Department of Mathematics, Anhui Normal University, Wuhu 241003, China;
b State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
c School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, China
Abstract  A class of disturbed evolution equation is considered using a simple and valid technique. We first introduce periodic traveling-wave solution of a corresponding typical evolution equation. And then the approximate solution for an original disturbed evolution equation is obtained using the asymptotic method. And we point out that the series of approximate solution is convergent and the accuracy of the asymptotic solution is studied using the fixed point theorem for the functional analysis.
Keywords:  period solution      traveling wave      evolution equation asymptotic method  
Received:  27 April 2012      Revised:  15 May 2012      Accepted manuscript online: 
PACS:  02.30.Sa (Functional analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41175058, 11071205, 1202106, and 11101349), the Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant Nos. XDA01020304, KJ2012A001, and KJ2012Z245), the Natural Science Foundation of the Education Department of Anhui Province, China (Grant No. KJ2011A135), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011042).
Corresponding Authors:  Yao Jing-Sun     E-mail:  jsyao@mail.ahnu.edu.cn

Cite this article: 

Yao Jing-Sun (姚静荪), Lin Wan-Tao (林万涛), Du Zeng-Ji (杜增吉), Mo Jia-Qi (莫嘉琪) Asymptotic solving method for period solution to a class of disturbed nonlinear evolution equation 2012 Chin. Phys. B 21 120205

[1] McPhaden M J and Zhang D 2002 Nature 415 603
[2] Sirendaoreji J S 2003 Phys. Lett. A 309 387
[3] Ma S H, Qiang J Y and Fang J P 2007 Commun. Theor. Phys. 48 662
[4] Parkes E J 2008 Chaos, Solitons and Fractals 38 154
[5] Yang J R and Mao J J 2008 Chin. Phys. Lett. 25 1527
[6] Yang X D, Ruan H Y and Lou S Y 2007 Commum. Theor. Phys. 48 961
[7] Yang J R and Mao J J 2008 Chin. Phys B 17 4337
[8] Pan L X, Zuo W M and Yan J R 2005 Acta Phys. Sin. 54 1 (in Chinese)
[9] Lu D C, Hong B J and Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese)
[10] Tapgetusang and Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese)
[11] Bartier Jean-Philippe 2006 Asymptotic Anal. 46 325
[12] Libre J and da Silva P R 2007 J. Dyn. Differ. Equations 19 309
[13] Guarguaglini F R and Natalini R 2007 Commun. Partial Differ. Equations 32 163
[14] Mo J Q 2009 Chin. Phys. Lett. 26 010204
[15] Mo J Q 2009 Chin Phys. Lett. 26 060202
[16] Mo J Q 2009 Sci. Chin. Ser G 39 568
[17] Mo J Q 2010 Commun. Theor. Phys. 53 440
[18] Mo J Q, Lin Y H and Lin W T 2010 Chin. Phys. B 19 030202
[19] Mo J Q, Lin W T and Lin Y H 2011 Chin. Phys. B 20 070205
[20] Lin W T, Lin Y H and Mo J Q 2012 Chin. Phys. B 21 010204
[21] Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press)
[22] Barbu L and Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG)
[1] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[2] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[3] Forward-wave enhanced radiation in the terahertz electron cyclotron maser
Zi-Chao Gao(高子超), Chao-Hai Du(杜朝海), Fan-Hong Li(李繁弘), Zi-Wen Zhang(张子文), Si-Qi Li(李思琦), and Pu-Kun Liu(刘濮鲲). Chin. Phys. B, 2022, 31(12): 128401.
[4] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[5] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[6] Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation
Ming Song(宋明)†, Beidan Wang(王贝丹), and Jun Cao(曹军). Chin. Phys. B, 2020, 29(10): 100206.
[7] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[8] One-dimensional mass transport with dynamic external potentials
Xingxing Zhang(张星星), Dongqin Zheng(郑冬琴), Weirong Zhong(钟伟荣). Chin. Phys. B, 2019, 28(2): 020505.
[9] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[10] Homotopic mapping solitary traveling wave solutions for the disturbed BKK mechanism physical model
Zhou Xian-Chun (周先春), Shi Lan-Fang (石兰芳), Han Xiang-Lin (韩祥临), Mo Jia-Qi (莫嘉琪). Chin. Phys. B, 2014, 23(9): 090204.
[11] On the exact solutions to the long–short-wave interaction system
Fan Hui-Ling (范慧玲), Fan Xue-Fei (范雪飞), Li Xin (李欣). Chin. Phys. B, 2014, 23(2): 020201.
[12] Novel loop-like solitons for generalized Vakhnenko equation
Zhang Min (张旻), Ma Yu-Lan (马玉兰), Li Bang-Qing (李帮庆). Chin. Phys. B, 2013, 22(3): 030511.
[13] Nonlinear time-dependent simulation of helix traveling wave tubes
Peng Wei-Feng(彭维峰), Yang Zhong-Hai(杨中海), Hu Yu-Lu(胡玉禄), Li Jian-Qing(李建清), Lu Qi-Ru(陆麒如), and Li Bin(李斌). Chin. Phys. B, 2011, 20(7): 078401.
[14] A three-dimensional time-dependent theory for helix traveling wave tubes in beam-wave interaction
Peng Wei-Feng(彭维峰), Hu Yu-Lu(胡玉禄), Yang Zhong-Hai(杨中海), Li Jian-Qing(李建清), Lu Qi-Ru(陆麒如), and Li Bin(李斌). Chin. Phys. B, 2011, 20(2): 028401.
[15] Traveling wave solutions for two nonlinear evolution equations with nonlinear terms of any order
Feng Qing-Hua(冯青华), Meng Fan-Wei(孟凡伟), and Zhang Yao-Ming(张耀明) . Chin. Phys. B, 2011, 20(12): 120202.
No Suggested Reading articles found!