Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 100206    DOI: 10.1088/1674-1056/ab9f27
General Prev   Next  

Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation

Ming Song(宋明)1,†, Beidan Wang(王贝丹)1, and Jun Cao(曹军)2
1 Department of Mathematics, Shaoxing University, Shaoxing 312000, China
2 Department of Mathematics, Yuxi Normal University, Yuxi 653100, China
Abstract  

We investigate (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation by utilizing the bifurcation theory of dynamical systems. We give the phase portraits and bifurcation analysis of the plane system corresponding to the GMDWW equation. By using the special orbits in the phase portraits, we analyze the existence of the traveling wave solutions. When some parameter takes special values, we obtain abundant exact kink wave solutions, singular wave solutions, periodic wave solutions, periodic singular wave solutions, and solitary wave solutions for the GMDWW equation.

Keywords:  bifurcation theory      generalized modified dispersive water wave equation      traveling wave solution  
Received:  28 April 2020      Revised:  05 June 2020      Accepted manuscript online:  23 June 2020
PACS:  02.30.Oz (Bifurcation theory)  
  04.20.Jb (Exact solutions)  
Corresponding Authors:  Corresponding author. E-mail: songming12_15@163.com   
About author: 
†Corresponding author. E-mail: songming12_15@163.com
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11361069 and 11775146).

Cite this article: 

Ming Song(宋明)†, Beidan Wang(王贝丹), and Jun Cao(曹军) Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation 2020 Chin. Phys. B 29 100206

Fig. 1.  

The phase portraits of system (8): (a) g < –g0, (b) g = –g0, (c) –g0 < g < 0, (d) g = 0, (e) 0 < g < g0, (f) g = g0, (g) g > g0.

Fig. 2.  

The profiles of traveling wave solutions of Eq. (2). (a) Kink wave solution (15), (b) singular wave solution (17), (c) periodic singular wave solution (19).

Fig. 3.  

The profiles of traveling wave solutions of Eq. (2). (a) Periodic wave solution (22), (b) solitary wave solution (24), (c) singular wave solution (29).

[1]
Dubrovskyt V G, Konopelcbenkof B G 1994 J. Phys. A: Math. Gen. 27 4619 DOI: 10.1088/0305-4470/27/13/035
[2]
Boitit M, Leon J J P, Manna M, Pempinellit F 1987 Inverse Probl. 3 25 DOI: 10.1088/0266-5611/3/1/008
[3]
Zheng C L 2003 Commun. Theor. Phys. 40 25 DOI: 10.1088/0253-6102/40/1/25
[4]
Li D S, Zhang H Q 2004 Chin. Phy. 13 1377 DOI: 10.1088/1009-1963/13/9/001
[5]
Ma Z Y 2007 Chin. Phy. 16 1848 DOI: 10.1088/1009-1963/16/7/007
[6]
Huang W H 2009 Chin. Phy. B 18 3163 DOI: 10.1088/1674-1056/18/8/012
[7]
Wen X Y, Xu X G 2013 Appl. Math. Comput. 219 7730
[8]
Ren B, Ma W X, Yu J 2019 Comput. Math. Appl. 77 2086 DOI: 10.1016/j.camwa.2018.12.010
[9]
Li J B, Liu Z R 2000 Appl. Math. Model. 25 41 DOI: 10.1016/S0307-904X(00)00031-7
[10]
Liu Z R, Yang C X 2002 J. Math. Anal. Appl. 275 1 DOI: 10.1016/S0022-247X(02)00210-X
[11]
Li J B 2012 Int. J. Bifur. Chaos 22 1250002 DOI: 10.1142/S0218127412500022
[12]
Song M, Liu Z R 2014 Math. Method Appl. Sci. 37 393 DOI: 10.1002/mma.2798
[13]
Wen Z S 2015 Math. Method Appl. Sci. 38 2363 DOI: 10.1002/mma.3226
[14]
Song M 2015 Nonlinear Dynamics 80 431 DOI: 10.1007/s11071-014-1880-5
[15]
Song M, Liu Z R, Yang C X 2015 Acta Math. Sin. 31 1043 DOI: 10.1007/s10114-015-3362-1
[16]
Zhao H X, Tang S Q 2017 Math. Method Appl. Sci. 40 2702 DOI: 10.1002/mma.4192
[17]
Li Y, Li S Y, Wei R Y 2017 Nonlinear Dynam. 88 609 DOI: 10.1007/s11071-016-3264-5
[18]
Shi L J, Wen Z S 2019 Chin. Phy. B 28 040201 DOI: 10.1088/1674-1056/28/4/040201
[19]
Li J B, Dai H H 2007 On the study of singular nonlinear traveling wave equations: Dynamical syetem approach Beijing Science Press http://www.ecsponline.com/goods.php?id=41580
[20]
Li J B 2019 Bifurcations and exact solutions in invariant manifolds for nonlinear wave equation Beijing Science Press http://www.ecsponline.com/goods.php?id=198384
[1] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[2] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[3] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[4] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[5] On the exact solutions to the long–short-wave interaction system
Fan Hui-Ling (范慧玲), Fan Xue-Fei (范雪飞), Li Xin (李欣). Chin. Phys. B, 2014, 23(2): 020201.
[6] Novel loop-like solitons for generalized Vakhnenko equation
Zhang Min (张旻), Ma Yu-Lan (马玉兰), Li Bang-Qing (李帮庆). Chin. Phys. B, 2013, 22(3): 030511.
[7] Topological aspect of vortex lines in two-dimensional Gross–Pitaevskii theory
Zhao Li (赵力), Yang Jie (杨捷), Xie Qun-Ying (谢群英), Tian Miao (田苗). Chin. Phys. B, 2012, 21(9): 090304.
[8] Traveling wave solutions for two nonlinear evolution equations with nonlinear terms of any order
Feng Qing-Hua(冯青华), Meng Fan-Wei(孟凡伟), and Zhang Yao-Ming(张耀明) . Chin. Phys. B, 2011, 20(12): 120202.
[9] A connection between the (G'/G)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation
Zhao Yin-Long (赵银龙), Liu Yin-Ping (柳银萍), and Li Zhi-Bin (李志斌). Chin. Phys. B, 2010, 19(3): 030306.
No Suggested Reading articles found!