INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Forward-wave enhanced radiation in the terahertz electron cyclotron maser |
Zi-Chao Gao(高子超), Chao-Hai Du(杜朝海)†, Fan-Hong Li(李繁弘), Zi-Wen Zhang(张子文), Si-Qi Li(李思琦), and Pu-Kun Liu(刘濮鲲)‡ |
School of Electronics, Peking University, Beijing 100871, China |
|
|
Abstract Based on the principle of electron cyclotron maser (ECM), gyrotrons are among the most promising devices to generate powerful coherent terahertz (THz) radiation and play a vital role in numerous advanced THz applications. Unfortunately, THz ECM systems using a conventional high-Q cavity were theoretically and experimentally demonstrated to suffer from strong ohmic losses, and, accordingly, the wave output efficiency was significantly reduced. A scheme to alleviate such a challenging problem is systematically investigated in this paper. The traveling-wave operation concept is employed in a 1-THz third harmonic gyrotron oscillator, which strengthens electron-wave interaction efficiency and reduces the ohmic dissipation, simultaneously. A lossy belt is added in the interaction circuit to stably constitute the traveling-wave interaction, and a down-tapered magnetic field is employed to further amplify the forward-wave (FW) component. The results demonstrate that the proportion of ohmic losses is nearly halved, and output efficiency is nearly doubled, which is promising for further advancement of high-power continuous-wave operation of the ECM-based devices.
|
Received: 24 June 2022
Revised: 31 July 2022
Accepted manuscript online: 09 September 2022
|
PACS:
|
84.40.Ik
|
(Masers; gyrotrons (cyclotron-resonance masers))
|
|
Fund: This work was supported in part by Beijing Science Foundation for Distinguished Young Scholars (Grant No. JQ21011), the National Natural Science Foundation of China (Grant Nos. U1830201 and 61531002), and Newton Advanced Fellowship from Royal Society in the United Kingdom (Grant No. NAF/R1/180121). |
Corresponding Authors:
Chao-Hai Du, Pu-Kun Liu
E-mail: duchaohai@pku.edu.cn;pkliu@pku.edu.cn
|
Cite this article:
Zi-Chao Gao(高子超), Chao-Hai Du(杜朝海), Fan-Hong Li(李繁弘), Zi-Wen Zhang(张子文), Si-Qi Li(李思琦), and Pu-Kun Liu(刘濮鲲) Forward-wave enhanced radiation in the terahertz electron cyclotron maser 2022 Chin. Phys. B 31 128401
|
[1] Idehara T, Tsuchiya H, Watanabe O, Agusu L and Mitsudo S 2006 Int. J. Infrared Millimeter Waves 27 319 [2] Glyavin M Y, Luchinin A G and Golubiatnikov G Y 2008 Phys. Rev. Lett. 100 015101 [3] Glyavin M Y, Luchinin A, Bogdashov A, Manuilov V, Morozkin M, Rodin Y, Denisov G, Kashin D, Rogers G and Romero-Talamas C 2014 Radiophys. Quantum Electron. 56 497 [4] Bratman V L, Kalynov Y K and Manuilov V N 2009 Phys. Rev. Lett. 102 245101 [5] Idehara T, Sabchevski S P, Glyavin M and Mitsudo S 2020 Appl. Sci. 10 980 [6] Jawla S K, Griffin R G, Mastovsky I A, Shapiro M A and Temkin R J 2020 IEEE Trans. Electron Devices 67 328 [7] Palitsin A V, Rodin Y V, Luchinin A G, Panin A N, Bakunin V L, Novozhilova Y V, Gromov A V, Goykhman M B, Zuev A S and Glyavin M Y 2020 IEEE Electron Device Lett. 41 1576 [8] Bakunin V L, Denisov G G and Novozhilova Y V 2020 IEEE Electron Device Lett. 41 777 [9] Zhang L, Donaldson C R, Cain P, Cross A W and He W 2018 IEEE Electron Device Lett. 39 1077 [10] Chu K R 2004 Rev. Mod. Phys. 76 489 [11] Kao S H, Chiu C C and Chu K R 2012 Phys. Plasmas 19 023112 [12] Nusinovich G S 2004 Introduction to the Physics of Gyrotrons (Maryland: JHU Press) [13] Glyavin M Y, Luchinin A G, Nusinovich G S, Rodgers J, Kashyn D G, Romero-Talamas C A and Pu R 2012 Appl. Phys. Lett. 101 153503 [14] Kalynov Y K, Manuilov V N, Fiks A S and Zavolskiy N A 2019 Appl. Phys. Lett. 114 213502 [15] Nusinovich G S, Thumm M K A and Petelin M I 2014 J. Infrared, Millimeter, Terahertz Waves 35 325 [16] Thumm M K A, Denisov G G, Sakamoto K and Tran M Q 2019 Nucl. Fusion 59 073001 [17] Ruess S, Avramidis K A, Fuchs M, Gantenbein G, Ioannidis Z, Illy S, Jin J, Kalaria P C, Kobarg T, Pagonakis I G, Ruess T, Rzesnicki T, Schmid M, Thumm M, Weggen J, Zein A and Jelonnek J 2018 Int. J. Microw. Wirel. Technol. 10 547 [18] Bandurkin I V, Fokin A P, Glyavin M Y, Luchinin A G, Osharin I V and Savilov A V 2020 IEEE Electron Device Lett. 41 1412 [19] Savilov A V 2009 Appl. Phys. Lett. 95 073503 [20] Bandurkin I V, Kalynov Y K and Savilov A V 2010 Phys. Plasmas 17 073101 [21] Bandurkin I V, Kalynov Y K, Makhalov P B, Osharin I V, Savilov A V and Zheleznov I V 2017 IEEE Trans. Electron Devices 64 300 [22] Bandurkin I V, Kalynov Y K and Savilov A V 2015 IEEE Trans. Electron Devices 62 2356 [23] Bandurkin I V, Bratman V L, Kalynov Y K, Osharin I V and Savilov A V 2018 IEEE Trans. Electron Devices 65 2287 [24] Bandurkin I V, Bratman V L, Kalynov Y K, Manuilov V N, Osharin I V and Savilov A V 2019 Radiophys. Quantum Electron. 62 513 [25] Choi E M, Marchewka C D, Mastovsky I, Sirigiri J R, Shapiro M A and Temkin R J 2006 Phys. Plasmas 13 023103 [26] Qi X B, Du C H and Liu P K 2015 IEEE Trans. Electron Devices 62 4278 [27] Gao Z C, Du C H, Li F H, Li S Q and Liu P K 2021 arXiv:2104.14108 [28] Glyavin M Y, Osharin I V and Savilov A V 2017 Appl. Phys. Lett. 111 073504 [29] Song T, Qi X, Yan Z, Liang P, Zhang C, Huang J, Wang W, Zhang K, Hu M, Wu Z, Zhao T and Liu D 2021 IEEE Electron Device Lett. 42 1232 [30] Li F, Du C, Gao Z, Pan S, Zhang L, Liu P, Ronald K and Cross A W 2020 IEEE Trans. Electron Devices 67 659 [31] Tsai C H, Chang T H, Tatematsu Y, Yamaguchi Y, Fukunari M, Saito T and Idehara T 2021 IEEE Trans. Electron Devices 68 324 [32] Idehara T and Sabchevski S P 2017 J. Infrared, Millimeter, Terahertz Waves 38 62 [33] Bratman V L, Savilov A V and Chang T H 2016 Radiophys. Quantum Electron. 58 660 [34] Kalynov Y K, Osharin I V and Savilov A V 2017 IEEE Trans. Electron Devices 64 4693 [35] Bandurkin I V, Kalynov Y K, Osharin I V and Savilov A V 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 1-6, 2019, Paris, France, p. 19079770 [36] Bandurkin I V, Kalynov Y K, Osharin I V and Savilov A V 2016 Phys. Plasmas 23 013113 [37] Kalynov Y K, Osharin I V and Savilov A V 2021 IEEE Trans. Electron Devices 68 4717 [38] Gao Z C, Du C H, Li F H and Liu P K 2021 J. Appl. Phys. 129 043306 [39] Nusinovich G S 1992 Phys. Fluids B: Plasma Phys. 4 1989 [40] Kirley M P and Booske J H 2014 IEEE International Vacuum Electronics Conference, April 22-24, 2014, Monterey, CA, USA, pp. 157-158 [41] Kirley M P and Booske J H 2015 IEEE Trans. Terahertz Sci. Technol. 5 1012 [42] Du C H, Chang T H, Liu P K, Huang Y C, Jiang P X, Xu S X, Geng Z H, Hao B L, Xiao L, Liu G F, Li Z D and Shi S H 2013 IEEE Trans. Electron Devices 60 2388 [43] Qi X B, Du C H and Liu P K 2015 IEEE Trans. Electron Devices 62 3399 [44] Wang Q S, Kou C S, McDermott D B, Lin A T, Chu K R and Luhmann N C 1992 IEEE Trans. Plasma Sci. 20 163 [45] Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T and Dialetis D J 1999 IEEE Trans. Plasma Sci. 27 391 [46] Du C H, Liu P K, Xue Q Z and Wang M H 2008 Phys. Plasmas 15 123107 [47] Du C H and Liu P K 2010 Phys. Plasmas 17 033104 [48] Du C H, Qi X B, Kong L B, Liu P K, Li Z D, Xu S X, Geng Z H and Xiao L 2015 IEEE Trans. Terahertz Sci. Technol. 5 236 [49] Du C, Qi X, Liu P, Chang T, Xu S, Geng Z, Hao B, Xiao L, Liu G, Li Z, Shi S and Wang H 2014 IEEE Trans. Electron Devices 61 1781 [50] Huang Y J, Chu K R and Thumm M 2015 Phys. Plasmas 22 013108 [51] Chu K R and Lin A T 1988 IEEE Trans. Plasma Sci. 16 90 [52] Gao Z C, Du C H, Li F H, Pan S, Zhang Z W and Liu P K 2020 Advanced Theory and Simulations 3 1900218 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|