Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 128401    DOI: 10.1088/1674-1056/ac90b4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Forward-wave enhanced radiation in the terahertz electron cyclotron maser

Zi-Chao Gao(高子超), Chao-Hai Du(杜朝海), Fan-Hong Li(李繁弘), Zi-Wen Zhang(张子文), Si-Qi Li(李思琦), and Pu-Kun Liu(刘濮鲲)
School of Electronics, Peking University, Beijing 100871, China
Abstract  Based on the principle of electron cyclotron maser (ECM), gyrotrons are among the most promising devices to generate powerful coherent terahertz (THz) radiation and play a vital role in numerous advanced THz applications. Unfortunately, THz ECM systems using a conventional high-Q cavity were theoretically and experimentally demonstrated to suffer from strong ohmic losses, and, accordingly, the wave output efficiency was significantly reduced. A scheme to alleviate such a challenging problem is systematically investigated in this paper. The traveling-wave operation concept is employed in a 1-THz third harmonic gyrotron oscillator, which strengthens electron-wave interaction efficiency and reduces the ohmic dissipation, simultaneously. A lossy belt is added in the interaction circuit to stably constitute the traveling-wave interaction, and a down-tapered magnetic field is employed to further amplify the forward-wave (FW) component. The results demonstrate that the proportion of ohmic losses is nearly halved, and output efficiency is nearly doubled, which is promising for further advancement of high-power continuous-wave operation of the ECM-based devices.
Keywords:  electron cyclotron maser      ohmic loss      harmonic operation      traveling wave interaction  
Received:  24 June 2022      Revised:  31 July 2022      Accepted manuscript online:  09 September 2022
PACS:  84.40.Ik (Masers; gyrotrons (cyclotron-resonance masers))  
Fund: This work was supported in part by Beijing Science Foundation for Distinguished Young Scholars (Grant No. JQ21011), the National Natural Science Foundation of China (Grant Nos. U1830201 and 61531002), and Newton Advanced Fellowship from Royal Society in the United Kingdom (Grant No. NAF/R1/180121).
Corresponding Authors:  Chao-Hai Du, Pu-Kun Liu     E-mail:  duchaohai@pku.edu.cn;pkliu@pku.edu.cn

Cite this article: 

Zi-Chao Gao(高子超), Chao-Hai Du(杜朝海), Fan-Hong Li(李繁弘), Zi-Wen Zhang(张子文), Si-Qi Li(李思琦), and Pu-Kun Liu(刘濮鲲) Forward-wave enhanced radiation in the terahertz electron cyclotron maser 2022 Chin. Phys. B 31 128401

[1] Idehara T, Tsuchiya H, Watanabe O, Agusu L and Mitsudo S 2006 Int. J. Infrared Millimeter Waves 27 319
[2] Glyavin M Y, Luchinin A G and Golubiatnikov G Y 2008 Phys. Rev. Lett. 100 015101
[3] Glyavin M Y, Luchinin A, Bogdashov A, Manuilov V, Morozkin M, Rodin Y, Denisov G, Kashin D, Rogers G and Romero-Talamas C 2014 Radiophys. Quantum Electron. 56 497
[4] Bratman V L, Kalynov Y K and Manuilov V N 2009 Phys. Rev. Lett. 102 245101
[5] Idehara T, Sabchevski S P, Glyavin M and Mitsudo S 2020 Appl. Sci. 10 980
[6] Jawla S K, Griffin R G, Mastovsky I A, Shapiro M A and Temkin R J 2020 IEEE Trans. Electron Devices 67 328
[7] Palitsin A V, Rodin Y V, Luchinin A G, Panin A N, Bakunin V L, Novozhilova Y V, Gromov A V, Goykhman M B, Zuev A S and Glyavin M Y 2020 IEEE Electron Device Lett. 41 1576
[8] Bakunin V L, Denisov G G and Novozhilova Y V 2020 IEEE Electron Device Lett. 41 777
[9] Zhang L, Donaldson C R, Cain P, Cross A W and He W 2018 IEEE Electron Device Lett. 39 1077
[10] Chu K R 2004 Rev. Mod. Phys. 76 489
[11] Kao S H, Chiu C C and Chu K R 2012 Phys. Plasmas 19 023112
[12] Nusinovich G S 2004 Introduction to the Physics of Gyrotrons (Maryland: JHU Press)
[13] Glyavin M Y, Luchinin A G, Nusinovich G S, Rodgers J, Kashyn D G, Romero-Talamas C A and Pu R 2012 Appl. Phys. Lett. 101 153503
[14] Kalynov Y K, Manuilov V N, Fiks A S and Zavolskiy N A 2019 Appl. Phys. Lett. 114 213502
[15] Nusinovich G S, Thumm M K A and Petelin M I 2014 J. Infrared, Millimeter, Terahertz Waves 35 325
[16] Thumm M K A, Denisov G G, Sakamoto K and Tran M Q 2019 Nucl. Fusion 59 073001
[17] Ruess S, Avramidis K A, Fuchs M, Gantenbein G, Ioannidis Z, Illy S, Jin J, Kalaria P C, Kobarg T, Pagonakis I G, Ruess T, Rzesnicki T, Schmid M, Thumm M, Weggen J, Zein A and Jelonnek J 2018 Int. J. Microw. Wirel. Technol. 10 547
[18] Bandurkin I V, Fokin A P, Glyavin M Y, Luchinin A G, Osharin I V and Savilov A V 2020 IEEE Electron Device Lett. 41 1412
[19] Savilov A V 2009 Appl. Phys. Lett. 95 073503
[20] Bandurkin I V, Kalynov Y K and Savilov A V 2010 Phys. Plasmas 17 073101
[21] Bandurkin I V, Kalynov Y K, Makhalov P B, Osharin I V, Savilov A V and Zheleznov I V 2017 IEEE Trans. Electron Devices 64 300
[22] Bandurkin I V, Kalynov Y K and Savilov A V 2015 IEEE Trans. Electron Devices 62 2356
[23] Bandurkin I V, Bratman V L, Kalynov Y K, Osharin I V and Savilov A V 2018 IEEE Trans. Electron Devices 65 2287
[24] Bandurkin I V, Bratman V L, Kalynov Y K, Manuilov V N, Osharin I V and Savilov A V 2019 Radiophys. Quantum Electron. 62 513
[25] Choi E M, Marchewka C D, Mastovsky I, Sirigiri J R, Shapiro M A and Temkin R J 2006 Phys. Plasmas 13 023103
[26] Qi X B, Du C H and Liu P K 2015 IEEE Trans. Electron Devices 62 4278
[27] Gao Z C, Du C H, Li F H, Li S Q and Liu P K 2021 arXiv:2104.14108
[28] Glyavin M Y, Osharin I V and Savilov A V 2017 Appl. Phys. Lett. 111 073504
[29] Song T, Qi X, Yan Z, Liang P, Zhang C, Huang J, Wang W, Zhang K, Hu M, Wu Z, Zhao T and Liu D 2021 IEEE Electron Device Lett. 42 1232
[30] Li F, Du C, Gao Z, Pan S, Zhang L, Liu P, Ronald K and Cross A W 2020 IEEE Trans. Electron Devices 67 659
[31] Tsai C H, Chang T H, Tatematsu Y, Yamaguchi Y, Fukunari M, Saito T and Idehara T 2021 IEEE Trans. Electron Devices 68 324
[32] Idehara T and Sabchevski S P 2017 J. Infrared, Millimeter, Terahertz Waves 38 62
[33] Bratman V L, Savilov A V and Chang T H 2016 Radiophys. Quantum Electron. 58 660
[34] Kalynov Y K, Osharin I V and Savilov A V 2017 IEEE Trans. Electron Devices 64 4693
[35] Bandurkin I V, Kalynov Y K, Osharin I V and Savilov A V 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 1-6, 2019, Paris, France, p. 19079770
[36] Bandurkin I V, Kalynov Y K, Osharin I V and Savilov A V 2016 Phys. Plasmas 23 013113
[37] Kalynov Y K, Osharin I V and Savilov A V 2021 IEEE Trans. Electron Devices 68 4717
[38] Gao Z C, Du C H, Li F H and Liu P K 2021 J. Appl. Phys. 129 043306
[39] Nusinovich G S 1992 Phys. Fluids B: Plasma Phys. 4 1989
[40] Kirley M P and Booske J H 2014 IEEE International Vacuum Electronics Conference, April 22-24, 2014, Monterey, CA, USA, pp. 157-158
[41] Kirley M P and Booske J H 2015 IEEE Trans. Terahertz Sci. Technol. 5 1012
[42] Du C H, Chang T H, Liu P K, Huang Y C, Jiang P X, Xu S X, Geng Z H, Hao B L, Xiao L, Liu G F, Li Z D and Shi S H 2013 IEEE Trans. Electron Devices 60 2388
[43] Qi X B, Du C H and Liu P K 2015 IEEE Trans. Electron Devices 62 3399
[44] Wang Q S, Kou C S, McDermott D B, Lin A T, Chu K R and Luhmann N C 1992 IEEE Trans. Plasma Sci. 20 163
[45] Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T and Dialetis D J 1999 IEEE Trans. Plasma Sci. 27 391
[46] Du C H, Liu P K, Xue Q Z and Wang M H 2008 Phys. Plasmas 15 123107
[47] Du C H and Liu P K 2010 Phys. Plasmas 17 033104
[48] Du C H, Qi X B, Kong L B, Liu P K, Li Z D, Xu S X, Geng Z H and Xiao L 2015 IEEE Trans. Terahertz Sci. Technol. 5 236
[49] Du C, Qi X, Liu P, Chang T, Xu S, Geng Z, Hao B, Xiao L, Liu G, Li Z, Shi S and Wang H 2014 IEEE Trans. Electron Devices 61 1781
[50] Huang Y J, Chu K R and Thumm M 2015 Phys. Plasmas 22 013108
[51] Chu K R and Lin A T 1988 IEEE Trans. Plasma Sci. 16 90
[52] Gao Z C, Du C H, Li F H, Pan S, Zhang Z W and Liu P K 2020 Advanced Theory and Simulations 3 1900218
[1] Electromagnetic absorption properties of flowerlike cobalt composites at microwave frequencies
Liu Tao(刘涛), Zhou Pei-Heng(周佩珩), Liang Di-Fei(梁迪飞), and Deng Long-Jiang(邓龙江) . Chin. Phys. B, 2012, 21(5): 050302.
No Suggested Reading articles found!