Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120204    DOI: 10.1088/1674-1056/21/12/120204
GENERAL Prev   Next  

Approximate solutions of nonlinear PDEs by the invariant expansion

Wu Jiang-Long (吴江龙)a, Lou Sen-Yue (楼森岳)b
a Faculty of Science, Ningbo University, Ningbo 315211, China;
b Center of Nonlinear Science, Ningbo University, Ningbo 315211, China
Abstract  It is difficult to obtain exact solutions of the nonlinear partial differential equations (PDEs) due to the complexity and nonlinearity, especially for non-integrable systems. In this paper, some reasonable approximations of real physics are considered, and the invariant expansion is proposed to solve real nonlinear system. A simple invariant expansion with quite a universal pseudopotential is used for some nonlinear PDEs such as Korteweg-de Vries (KdV) equation with fifth-order dispersion term, perturbed fourth-order KdV equation, KdV-Burgers equation, and Boussinesq type of equation.
Keywords:  approximate solution      invariant expansion      Mobious transformation invariance  
Received:  28 April 2012      Revised:  20 June 2012      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  47.10.ab (Conservation laws and constitutive relations)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175092), Scientific Research Fund of Zhejiang Provincial Education Department (Grant No. Y201017148), and K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Wu Jiang-Long     E-mail:  wjlazxm@sina.com;375516508@qq.com

Cite this article: 

Wu Jiang-Long (吴江龙), Lou Sen-Yue (楼森岳) Approximate solutions of nonlinear PDEs by the invariant expansion 2012 Chin. Phys. B 21 120204

[1] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 1405
[2] Nucci M C 1989 J. Phys. A: Math. Gen. 22 2897
[3] Lou S Y and Xu J J 1998 J. Math. Phys. 39 5364
[4] Zhang S L, Wu B and Lou S Y 2002 Phys. Lett. A 300 40
[5] Zhang S L, Tang X Y and Lou S Y 2002 Commun. Theor. Phys. 38 513
[6] Liang Z F and Tang X Y 2009 Phys. Lett. A 374 110
[7] Conte R 1989 Phys. Lett. A 140 383
[8] Cariello and Tabor M 1991 Physica D 53 59
[9] Pickering A 1993 J. Phys. A: Math. Gen. 26 4395
[10] Lou S Y 1998 Z. Naturforsch 53a 251
[11] Ruan H Y 1999 Journal of Ningbo University 12 42
[12] Tang X Y and Hu H C 2002 Chin. Phys. Lett. 19 1225
[13] Zhang M X, Liu Q P, Wang J and Wu K 2008 Chin. Phys. B 17 10
[14] Liu X Z 2010 Chin. Phys. B 19 080202
[15] Li J M, Liang Z F and Tang X Y 2010 Chin. Phys. B 19 100205
[16] Yang R S, Yao C M and Chen R X 2009 Chin. Phys. B 18 3736
[17] Wang Y F, Lou S Y and Qian X M 2010 Chin. Phys. B 19 050202
[18] Yao R X, Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 1821
[19] Wang H, Dong H H, Wang Y H and Wang X Z 2010 Chin. Phys. B 19 060202
[20] Katuro S and Takeyasu K 1974 Prog. Theor. Phys. 51 1355
[21] Wu B and Lou S Y 2002 Commun. Theor. Phys. 38 649
[22] Jeffrey A and Mohamad M N B 1991 Wave Motion 14 369
[23] Jun K C, Satsuma and D J Kaup 1977 J. Phys. Soc. Jpn. 43 692
[1] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[2] Dynamic characteristics of resonant gyroscopes study based on the Mathieu equation approximate solution
Fan Shang-Chun(樊尚春), Li Yan(李艳), Guo Zhan-She(郭占社), Li Jing(李晶), and Zhuang Hai-Han(庄海涵) . Chin. Phys. B, 2012, 21(5): 050401.
[3] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[4] Asymptotic solution for the Eiño time delay sea–air oscillator model
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Lin Yi-Hua(林一骅). Chin. Phys. B, 2011, 20(7): 070205.
[5] Homotopic mapping solving method of the reduces equation for Kelvin waves
Mo Jia-Qi(莫嘉琪), Lin Yi-Hua(林一骅), and Lin Wan-Tao(林万涛). Chin. Phys. B, 2010, 19(3): 030202.
[6] Approximate solution for the Klein-Gordon-Schr?dinger equation by the homotopy analysis method
Wang Jia(王佳), Li Biao(李彪), and Ye Wang-Chuan(叶望川). Chin. Phys. B, 2010, 19(3): 030401.
[7] Three types of generalized Kadomtsev-Petviashvili equations arising from baroclinic potential vorticity equation
Zhang Huan-Ping(张焕萍), Li Biao(李彪), Chen Yong (陈勇), and Huang Fei(黄菲). Chin. Phys. B, 2010, 19(2): 020201.
[8] A new method to obtain approximate symmetry of nonlinear evolution equation from perturbations
Zhang Zhi-Yong(张智勇), Yong Xue-Lin(雍雪林), and Chen Yu-Fu(陈玉福). Chin. Phys. B, 2009, 18(7): 2629-2633.
[9] Study on an extended Boussinesq equation
Chen Chun-Li(陈春丽), Zhang Jin E(张近), and Li Yi-Shen(李翊神). Chin. Phys. B, 2007, 16(8): 2167-2179.
[10] The sea--air oscillator model of decadal variations in subtropical cells and equatorial Pacific SST
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Lin Yi-Hua(林一骅). Chin. Phys. B, 2007, 16(7): 1908-1911.
[11] Variational iteration method for solving perturbed mechanism of western boundary undercurrents in the Pacific
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Wang Hui(王辉) . Chin. Phys. B, 2007, 16(4): 951-954.
No Suggested Reading articles found!