Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020201    DOI: 10.1088/1674-1056/23/2/020201
GENERAL   Next  

On the exact solutions to the long–short-wave interaction system

Fan Hui-Ling (范慧玲), Fan Xue-Fei (范雪飞), Li Xin (李欣)
School of Science, Heilongjiang Bayi Agriculture University, Daqing 163319, China
Abstract  The complete discrimination system for polynomial method is applied to the long–short-wave interaction system to obtain the classifications of single traveling wave solutions. Compared with the solutions given by the (G’/G)-expansion method, we gain some new solutions.
Keywords:  single traveling wave solution      complete discrimination system for polynomial method      long–short-wave interaction system  
Received:  11 June 2013      Revised:  21 July 2013      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.70.Wz (Symbolic computation (computer algebra))  
  05.45.Yv (Solitons)  
  94.05.Fg (Solitons and solitary waves)  
Fund: Project supported by the Scientific Research Fund of Education Department of Heilongjiang Province of China (Grant No. 12531475).
Corresponding Authors:  Fan Hui-Ling     E-mail:  huilingnepu@126.com
About author:  02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg

Cite this article: 

Fan Hui-Ling (范慧玲), Fan Xue-Fei (范雪飞), Li Xin (李欣) On the exact solutions to the long–short-wave interaction system 2014 Chin. Phys. B 23 020201

[1] Ahmet Bekir, Burcu Ayhan and M Naci Ozer 2013 Chin. Phys. B 22 010202
[2] Liu C S 2007 Commun. Theor. Phys. 48 601
[3] Liu C S 2006 Commun. Theor. Phys. 45 991
[4] Liu C S 2007 Chin. Phys. 16 1832
[5] Liu C S 2008 Commun. Theor. Phys. 49 153
[6] Liu C S 2008 Commun. Theor. Phys. 49 291
[7] Liu C S 2010 Comput. Phys. Commun. 181 317
[8] Liu C S 2004 Chin. Phys. Lett. 21 2369
[9] Liu C S 2005 Chin. Phys. 14 1710
[10] Wang D S and Li H B 2008 Math. Anal. Appl. 343 273
[11] Wang C Y, Guan J and Wang B Y 2011 Pramana-J. Phys. 77 759
[12] Fan H L 2012 Appl. Math. Comput. 219 748
[13] Liu C S 2005 Acta Phys. Sin. 54 2505 (in Chinese)
[14] Hu H C, Lou S Y and Liu Q P 2003 Chin. Phys. Lett. 20 1413
[15] Ying J P and Lou S Y 2003 Chin. Phys. Lett. 20 1448
[16] Fan E G, Zhang H Q and Lin G 1998 Chin. Phys. 7 649
[1] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[5] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[8] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[9] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[10] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[11] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[12] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[13] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[14] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[15] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
No Suggested Reading articles found!