Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 114212    DOI: 10.1088/1674-1056/21/11/114212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Controlling the self-collimation characteristics of near-infrared two-dimensional metallic photonic crystal

Feng Shuai (冯帅)a, Ren Cheng (任承)b, Wang Wen-Zhong (王文忠)a, Wang Yi-Quan (王义全 )a
a School of Science, Minzu University of China, Beijing 100081, China;
b School of Opto-electronic Information Science and Technology, Yantai University, Yantai 264005, China
Abstract  Self-collimation characteristics of the two-dimensional square-lattice photonic crystal (PC) consisting of metal rods immersed in silicon are studied by the finite-difference time-domain method. The Drude dispersion model is adopted to describe the metal rod, and the self-collimation behaviours of the near-infrared light through the PC are studied. The frequency region and the tolerance of incident angle for the self-collimation behaviour can be controlled by changing the shape of the metal rods.
Keywords:  photonic crystal      self-collimation      beam splitter  
Received:  03 February 2012      Revised:  06 June 2012      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904176, 11004169, and 11047127), the Doctoral Foundation of Shandong Province, China (Grant No. BS2009CL028), the "985 Project", China (Grant No. 98507-012009), and the "211 Project" of the Ministry of Education of China.
Corresponding Authors:  Feng Shuai     E-mail:  fengshuai75@163.com

Cite this article: 

Feng Shuai (冯帅), Ren Cheng (任承), Wang Wen-Zhong (王文忠), Wang Yi-Quan (王义全 ) Controlling the self-collimation characteristics of near-infrared two-dimensional metallic photonic crystal 2012 Chin. Phys. B 21 114212

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Johnson S G, Villeneuve P R, Fan S and Joannopoulos J D 2000 Phys. Rev. B 62 8212
[4] Tokushima M and Yamada H 2002 IEEE J. Quantum Elect. 38 753
[5] Feng S and Wang Y Q 2011 Chin. Phys. B 20 054209
[6] Fan S, Villeneuve P R, Joannopoulos J D and Haus H A 1998 Phys. Rev. Lett. 80 960
[7] Takano H, Akahane Y, Asano T and Noda S 2004 Appl. Phys. Lett. 84 2226
[8] Liu J T, Zhou Y S, Wang F H and Gu B Y 2005 Chin. Phys. 14 2474
[9] Feng S and Wang Y Q 2011 Chin. Phys. B 20 104207
[10] Villeneuve P R, Abrams D S, Fan S and Joannopoulos J D 1996 Opt. Lett. 21 2017
[11] Hu X Y, Liu Y H, Tie J, Cheng B Y and Zhang D Z 2005 Appl. Phys. Lett. 86 121102
[12] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T and Kawakami S 1998 Phys. Rev. B 58 R10096
[13] Parimi P V, Lu W T, Vodo P, Sokoloff J, Derov J S and Sridhar S 2004 Phys. Rev. Lett. 92 74011
[14] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T and Kawakami S 1999 Appl. Phys. Lett. 74 1212
[15] Lee S G, Oh S S, Kim J E and Parka H Y 2005 Appl. Phys. Lett. 87 181106
[16] Hamam R E, Ibanescu M, Johnson S G, Joannopoulos J D and Soljacic M 2009 Opt. Express 17 8109
[17] Botten L C, White T P, de Sterke C M and McPhedran R C 2006 Phys. Rev. E 74 026603
[18] Lawrence F J, Botten L C, Dossou K B and de Sterke C M 2008 Appl. Phys. Lett. 93 1114
[19] Wu Z H, Xie K, Yang H J, Jiang P and He X J 2012 J. Opt. 14 015002
[20] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[21] Berenger J P 1996 J. Comput. Phys. 127 363
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[8] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[12] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[15] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
No Suggested Reading articles found!