Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 114204    DOI: 10.1088/1674-1056/21/11/114204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Saturation of biphoton generation near atomic resonance

Chen Peng (陈鹏), Qian Jun (钱军), Hu Zheng-Feng (胡正峰), Wang Yu-Zhu (王育竹 )
Key Laboratory for Quantum Optics, Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
Abstract  We have numerically investigated the biphoton generation rate as a function of several parameters in the spontaneous four wave mixing in cold atoms. It has been found that the biphoton generation rate can easily reach saturation with the intensity of the coupling laser increasing. The saturation intensity is mainly dependent on the dephasing rate of the ground states, unrelated to the pumping laser. It implies that though the biphoton waveform can be manipulated by the coupling laser, the generation rate of the biphoton cannot increase markedly after the saturation. The saturation effect also suggests that there is an optimal coupling laser for obtaining the largest biphoton generation rate with the sufficiently long coherence time.
Keywords:  two-photon generation      four wave mixing      cold atoms  
Received:  05 March 2012      Revised:  09 May 2012      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10804115), the National Basic Research Program of China (Grant Nos. 2006CB921202 and 2011CB921504), the Knowledge Innovation Project of Chinese Academy of Sciences, and the Shanghai Committee of Science and Technology, China (Grant No. 09DJ1400700).
Corresponding Authors:  Wang Yu-Zhu     E-mail:  yzwang@mail.shcnc.ac.cn

Cite this article: 

Chen Peng (陈鹏), Qian Jun (钱军), Hu Zheng-Feng (胡正峰), Wang Yu-Zhu (王育竹 ) Saturation of biphoton generation near atomic resonance 2012 Chin. Phys. B 21 114204

[1] Balic V, Danielle A B, Kolchin P, Yin G Y and Harris S E 2005 Phys. Rev. Lett. 94 183601
[2] Kolchin P, Du S W, Belthangady C, Yin G Y and Harris S E 2006 Phys. Rev. Lett. 97 113602
[3] Shengwang D, Kolchin P, Belthangady C, Yin G Y and Harris S E 2008 Phys. Rev. Lett. 100 183603
[4] Yan H, Zhang S C, Chen J F, Loy M M T, Wong G K L and Du S W 2011 Phys. Rev. Lett. 106 033601
[5] Chen P, Zhou S Y, Xu Z, Duan Y F, Cui G D and Wang Y Z 2011 Chin. Phys. Lett. 28 074214
[6] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[7] Briegel H J, Dur W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[8] Halder M, Beveratos A, Gisin N, Scarani V, Simon C and Zbinden H 2007 Nature Phys. 10 692
[9] Du S W, Wen J M and Rubin M H 2008 JOSAB 25 pC98
[10] Wen J M, Du S W and Rubin M H 2007 Phys. Rev. A 76 013825
[11] Kang H, Hernandez G and Zhu Y F 2004 Phys. Rev. A 70 061804
[12] Wang G, Len L, Qu Y, Xue Y, Wu J H and Gao J Y 2011 Opt. Express 19 21614
[13] Braje D A, Balic V, Goda S, Yin G Y and Harris S E 2004 Phys. Rev. Lett. 93 183601
[14] Kolchin P 2007 Phys. Rev. A 75 033814
[15] Liu Y, Wu J H, Shi B S and Guo G C 2012 Chin. Phys. Lett. 29 024205
[16] Zhang S C, Zhou S Y, Loy M M T, Wong G K L and Du S W 2011 Opt. Lett. 36 4530
[1] Integrated, reliable laser system for an 87Rb cold atom fountain clock
Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜). Chin. Phys. B, 2023, 32(1): 013202.
[2] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[3] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[4] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[5] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[6] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[7] Demonstration of a cold atom beam splitter on atom chip
Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(8): 080311.
[8] Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space
Xiaojun Jiang(蒋小军), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(3): 034204.
[9] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
[10] Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling
Xie Wen-Fang (解文方), He Yan-Zhang (贺彦章), Bao Cheng-Guang (鲍诚光). Chin. Phys. B, 2015, 24(6): 060305.
[11] Comparison of two absorption imaging methods to detect cold atoms in magnetic trap
Wang Yan (王妍), Hu Zhao-Hui (胡朝晖), Qi Lu (亓鲁). Chin. Phys. B, 2015, 24(2): 024203.
[12] Photostop of iodine atoms from electrically oriented ICl molecules
Bao Da-Xiao (暴大小), Deng Lian-Zhong (邓联忠), Xu Liang (许亮), Yin Jian-Ping (印建平). Chin. Phys. B, 2015, 24(11): 113702.
[13] Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms
Ji Zhong-Hua (姬中华), Yuan Jin-Peng (元晋鹏), Zhao Yan-Ting (赵延霆), Chang Xue-Fang (常雪芳), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2014, 23(11): 113702.
[14] Nanoscale guiding for cold atoms based on surface plasmons alongtips of metallic wedges
Wang Zheng-Ling (王正岭), Tang Wei-Min (唐伟民), Zhou Ming (周明), Gao Chuan-Yu (高传玉). Chin. Phys. B, 2013, 22(7): 073701.
[15] Production of 87Rb Bose-Einstein condensates in a hybrid trap
Duan Ya-Fan (段亚凡), Jiang Bo-Nan (姜伯楠), Sun Jian-Fang (孙剑芳), Liu Kang-Kang (刘亢亢), Xu Zhen (徐震), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(5): 056701.
No Suggested Reading articles found!