Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017401    DOI: 10.1088/1674-1056/21/1/017401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Sn-based type-VIII single-crystal clathrates with a large figure of merit

Deng Shu-Kang(邓书康)a), Li De-Cong(李德聪)a), Shen Lan-Xian(申兰先)a), Hao Rui-Ting(郝瑞亭)a), and T. Takabatakeb)
a Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials of Ministry of Education Solar Energy Research Institute, Yunnan Normal University, Kunming 650092, China; b Department of Quantum Matter, ADSM and IAMR Hiroshima University, Higashi-Hiroshima 739-8530, Japan
Abstract  Single-crystal samples of type-VIII Ba8Ga16 - xCuxSn30 (x=0, 0.03, 0.06, 0.15) clathrates were prepared using the Sn-flux method. At room temperature the carrier density, n, is 3.5-5×1019 cm-3 for all the samples, the carrier mobility, μH, increases to more than twice that of Ba8Ga16Sn30 for all the Cu doping samples, and consequently the electrical conductivity is enhanced distinctly from 1.90×104 S/m to 4.40×104 S/m, with the Cu composition increasing from x=0 to x=0.15. The Seebeck coefficient, α , decreases slightly with the increases in Cu composition. The κ values are about 0.72 W/mK at 300 K and are almost invariant with temperature up to 500 K for the samples with x=0 and x=0.03. The lattice thermal conductivity, κL, decreases from 0.59 W/mK for x=0 to 0.50 W/mK for x=0.03 at 300 K. The figure of merit for x=0.03 reaches 1.35 at 540 K.
Keywords:  thermoelectric material      type-VIII clathrate      thermoelectric properties  
Received:  04 May 2011      Revised:  30 August 2011      Accepted manuscript online: 
PACS:  74.25.F- (Transport properties)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50902119).

Cite this article: 

Deng Shu-Kang(邓书康), Li De-Cong(李德聪), Shen Lan-Xian(申兰先), Hao Rui-Ting(郝瑞亭), and T. Takabatake Sn-based type-VIII single-crystal clathrates with a large figure of merit 2012 Chin. Phys. B 21 017401

[1] Zhang F P, Zhang X, Lu Q M and Zhang J X 2010 Acta Phys. Sin. 59 4211 (in Chinese)
[2] Deng S K, Tang X F and Tang R S 2009 Chin. Phys. B 18 3084
[3] Shi X, Kong H, Li C P, Uher C, Yang J, Salvador J R, Wang H, Chen L and Zhang W 2008 Appl. Phys. Lett. 92 182101
[4] Zhao W Y, Dong C L, P Wei, Guan W, Liu L S, Zhai P C, Tang X F and Zhang Q J 2007 J. Appl. Phys. 102 113708
[5] Nolas G S, Slack G A and Schujman S B 2000 Semiconductors and Semimetals (San Diego: Academic)
[6] Li J C, Wang C L, Wang M X Peng H, Zhang R Z, Zhao M L, Liu J, Zhang J L and Mei L M 2009 J. Appl. Phys. 105 043503
[7] Kuznetsov V L, Kuznetsova L A, Kaliazin A E and Rowe D M 2000 it J. Appl. Phys. 87 7871
[8] Slack G A 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press)
[9] Saramat A, Svensson G and Palmqvist A E C 2006 J. Appl. Phys. 99 023708
[10] Kim J H, Norihiko L, Okamoto K K, Katsushi T and Haruyuki I 2006 Acta. Mater. 54 2057
[11] Martin J, Wang H and Nolas G S 2008 Appl. Phys. Lett. 92 222110
[12] May A F, Toberer E S, Saramat A and Snyder G J 2009 Phys. Rev. B 80 125205
[13] Avila M A, Suekuni K, Umeo K, Fukuoka H, Yamanaka S and Takabatake T 2006 Phys. Rev. B 74 125109
[14] Suekuni K, Avila M A, Umeo K, Fukuoka H, Yamanaka S, Nakagawa T and Takabatake T 2008 Phys. Rev. B 77 235119
[15] Huo D, Sakata T, Sasakawa T, Avila M A, Tsubota M, Iga F, Fukuoka H, Yamanaka S, Aoyagi S and Takabatake T 2005 Phys. Rev. B 71 075113
[16] Paschen S, Carrillo-Cabrera W, Bentien A, Tran V H, Baenitz M, Grin Y and Steglich F 2001 Phys. Rev. B 64 214404
[17] Sasaki Y, Kishimoto K, Koyanagi T, Asada H and Akai K 2009 J. Appl. Phys. 105 073702
[18] Kishimoto K, Ikeda N, Akai K and Koyanagi T 2008 Appl. Phys. Express 1 031201
[19] Bentien A, Pacheco V, Paschen S, Grin Y and Steglich F 2005 Phys. Rev. B 71 165206
[20] Phan M H, Woods G T, Chaturvedi A, Stefanoski S, Nolas G S and Srikant H 2008 Appl. Phys. Lett. 93 252505
[21] Pacheco V, Bentien A, Carrillo-Cabrera W, Paschen S, Steglich F and Grin Y 2005 Phys. Rev. B 71 165205
[22] Nolas G S, Cohn J L, Dyck J S, Uher C, Lamberton G A Jr and Tritt T M 2004 J. Mater. Res. 19 3556
[23] Deng S K, Saiga Y, Suekuni K and Takabatake T 2010 J. Appl. Phys. 108 072705
[24] Saiga Y, Suekunia K, Deng S K, Yamamoto T, Kono Y, Ohya N and Takabatake T 2010 J. Alloys Compd. 507 1
[25] Goldsmid H J 2010 Introduction to Thermoelectricity (Berlin: Springer)
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[5] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[9] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[10] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[11] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[12] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[13] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[14] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[15] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
No Suggested Reading articles found!