CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Sn-based type-VIII single-crystal clathrates with a large figure of merit |
Deng Shu-Kang(邓书康)a)†, Li De-Cong(李德聪)a), Shen Lan-Xian(申兰先)a), Hao Rui-Ting(郝瑞亭)a), and T. Takabatakeb) |
a Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials of Ministry of Education Solar Energy Research Institute, Yunnan Normal University, Kunming 650092, China; b Department of Quantum Matter, ADSM and IAMR Hiroshima University, Higashi-Hiroshima 739-8530, Japan |
|
|
Abstract Single-crystal samples of type-VIII Ba8Ga16 - xCuxSn30 (x=0, 0.03, 0.06, 0.15) clathrates were prepared using the Sn-flux method. At room temperature the carrier density, n, is 3.5-5×1019 cm-3 for all the samples, the carrier mobility, μH, increases to more than twice that of Ba8Ga16Sn30 for all the Cu doping samples, and consequently the electrical conductivity is enhanced distinctly from 1.90×104 S/m to 4.40×104 S/m, with the Cu composition increasing from x=0 to x=0.15. The Seebeck coefficient, α , decreases slightly with the increases in Cu composition. The κ values are about 0.72 W/mK at 300 K and are almost invariant with temperature up to 500 K for the samples with x=0 and x=0.03. The lattice thermal conductivity, κL, decreases from 0.59 W/mK for x=0 to 0.50 W/mK for x=0.03 at 300 K. The figure of merit for x=0.03 reaches 1.35 at 540 K.
|
Received: 04 May 2011
Revised: 30 August 2011
Accepted manuscript online:
|
PACS:
|
74.25.F-
|
(Transport properties)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
72.15.Eb
|
(Electrical and thermal conduction in crystalline metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50902119). |
Cite this article:
Deng Shu-Kang(邓书康), Li De-Cong(李德聪), Shen Lan-Xian(申兰先), Hao Rui-Ting(郝瑞亭), and T. Takabatake Sn-based type-VIII single-crystal clathrates with a large figure of merit 2012 Chin. Phys. B 21 017401
|
[1] |
Zhang F P, Zhang X, Lu Q M and Zhang J X 2010 Acta Phys. Sin. 59 4211 (in Chinese)
|
[2] |
Deng S K, Tang X F and Tang R S 2009 Chin. Phys. B 18 3084
|
[3] |
Shi X, Kong H, Li C P, Uher C, Yang J, Salvador J R, Wang H, Chen L and Zhang W 2008 Appl. Phys. Lett. 92 182101
|
[4] |
Zhao W Y, Dong C L, P Wei, Guan W, Liu L S, Zhai P C, Tang X F and Zhang Q J 2007 J. Appl. Phys. 102 113708
|
[5] |
Nolas G S, Slack G A and Schujman S B 2000 Semiconductors and Semimetals (San Diego: Academic)
|
[6] |
Li J C, Wang C L, Wang M X Peng H, Zhang R Z, Zhao M L, Liu J, Zhang J L and Mei L M 2009 J. Appl. Phys. 105 043503
|
[7] |
Kuznetsov V L, Kuznetsova L A, Kaliazin A E and Rowe D M 2000 it J. Appl. Phys. 87 7871
|
[8] |
Slack G A 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press)
|
[9] |
Saramat A, Svensson G and Palmqvist A E C 2006 J. Appl. Phys. 99 023708
|
[10] |
Kim J H, Norihiko L, Okamoto K K, Katsushi T and Haruyuki I 2006 Acta. Mater. 54 2057
|
[11] |
Martin J, Wang H and Nolas G S 2008 Appl. Phys. Lett. 92 222110
|
[12] |
May A F, Toberer E S, Saramat A and Snyder G J 2009 Phys. Rev. B 80 125205
|
[13] |
Avila M A, Suekuni K, Umeo K, Fukuoka H, Yamanaka S and Takabatake T 2006 Phys. Rev. B 74 125109
|
[14] |
Suekuni K, Avila M A, Umeo K, Fukuoka H, Yamanaka S, Nakagawa T and Takabatake T 2008 Phys. Rev. B 77 235119
|
[15] |
Huo D, Sakata T, Sasakawa T, Avila M A, Tsubota M, Iga F, Fukuoka H, Yamanaka S, Aoyagi S and Takabatake T 2005 Phys. Rev. B 71 075113
|
[16] |
Paschen S, Carrillo-Cabrera W, Bentien A, Tran V H, Baenitz M, Grin Y and Steglich F 2001 Phys. Rev. B 64 214404
|
[17] |
Sasaki Y, Kishimoto K, Koyanagi T, Asada H and Akai K 2009 J. Appl. Phys. 105 073702
|
[18] |
Kishimoto K, Ikeda N, Akai K and Koyanagi T 2008 Appl. Phys. Express 1 031201
|
[19] |
Bentien A, Pacheco V, Paschen S, Grin Y and Steglich F 2005 Phys. Rev. B 71 165206
|
[20] |
Phan M H, Woods G T, Chaturvedi A, Stefanoski S, Nolas G S and Srikant H 2008 Appl. Phys. Lett. 93 252505
|
[21] |
Pacheco V, Bentien A, Carrillo-Cabrera W, Paschen S, Steglich F and Grin Y 2005 Phys. Rev. B 71 165205
|
[22] |
Nolas G S, Cohn J L, Dyck J S, Uher C, Lamberton G A Jr and Tritt T M 2004 J. Mater. Res. 19 3556
|
[23] |
Deng S K, Saiga Y, Suekuni K and Takabatake T 2010 J. Appl. Phys. 108 072705
|
[24] |
Saiga Y, Suekunia K, Deng S K, Yamamoto T, Kono Y, Ohya N and Takabatake T 2010 J. Alloys Compd. 507 1
|
[25] |
Goldsmid H J 2010 Introduction to Thermoelectricity (Berlin: Springer)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|