Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 016803    DOI: 10.1088/1674-1056/21/1/016803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Uniaxial stress influence on lattice, band gap and optical properties of n-type ZnO:first-principles calculations

Yang Ping(杨平), Li Pei(李培), Zhang Li-Qiang(张立强), Wang Xiao-Liang(王晓亮), Wang Huan(王欢), Song Xi-Fu(宋喜福), and Xie Fang-Wei(谢方伟)
Laboratory of Advanced Manufacturing & Reliability for MEMS/NEMS/OEDS, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Abstract  The lattice, the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by first-principles calculations. The results show that the lattice constants change linearly with stress. Band gaps are broadened linearly as the uniaxial compressive stress increases. The change of band gap for n-type ZnO comes mainly from the contribution of stress in the c-axis direction, and the reason for band gap of n-type ZnO changing with stress is also explained. The calculated results of optical properties reveal that the imaginary part of the dielectric function decreases with the increase of uniaxial compressive stress at low energy. However, when the energy is higher than 4.0 eV, the imaginary part of the dielectric function increases with the increase of stress and a blueshift appears. There are two peaks in the absorption spectrum in an energy range of 4.0-13.0 eV. The stress coefficient of the band gap of n-type ZnO is larger than that of pure ZnO, which supplies the theoretical reference value for the modulation of the band gap of doped ZnO.
Keywords:  uniaxial stress      first-principles      optical properties      n-type ZnO  
Received:  16 May 2011      Revised:  22 August 2011      Accepted manuscript online: 
PACS:  68.60.Bs (Mechanical and acoustical properties)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61076098) and the Innovative Foundation for Doctoral Candidate of Jiangsu Province, China (Grant No. CX10B 252Z).

Cite this article: 

Yang Ping(杨平), Li Pei(李培), Zhang Li-Qiang(张立强), Wang Xiao-Liang(王晓亮), Wang Huan(王欢), Song Xi-Fu(宋喜福), and Xie Fang-Wei(谢方伟) Uniaxial stress influence on lattice, band gap and optical properties of n-type ZnO:first-principles calculations 2012 Chin. Phys. B 21 016803

[1] Michael H H, Samuel M, Henning F, Yan H Q, Wu Y Y, Hannes K, Eicke W, Richard R and Yang P D 2001 Science 292 1897
[2] Wienke J, Zanden B V D, Tijssen M and Zeman M 2008 Sol. Energ. Mat. Sol. C 92 884
[3] Zhao S Q, Yang L M, Liu W W, Zhao K, Zhou Y L and Zhou Q L 2010 Chin. Phys. B 19 087204
[4] Sberveglieri G, Groppelli S, Nelli P, Tintinelli A and Giunta G 1995 Sens. Actuators B: Chem. 24-25 588
[5] Gil M N and Myoung S K 2008 J. Inform. Display 9 8
[6] Nunes P, Costa D, Fortunato E and Martins R 2002 Vacuum 64 293
[7] Wienke J and Booij A S 2008 Thin Solid Films 516 4508
[8] Christopher W G, Ajaya K S, Joseph J B, Brandon J R, Maikel F A M V H, Paul H H, David S G and John D P 2010 Thin Solid Films 519 190
[9] Li W L, Sun Y and Fei W D 2006 Appl. Surf. Sci. 252 4995
[10] Goto M, Kasahara A, Tosa M, Kimura T and Yoshihara K 2002 Appl. Surf. Sci. 185 172
[11] Khan N and Li J 2006 Appl. Phys. Lett. 89 151916
[12] Ghosh R, Basak D and Fujihara S 2004 J. Appl. Phys. 96 2689
[13] Ozen I and Gulgun 2006 Adv. Sci. Technol. 45 1316
[14] Zhao D G, Xu S J, Xie M H, Tong S Y and Yang Hui 2003 Appl. Phys. Lett. 83 677
[15] Schleife A, Rödl C, Fuchs F, Furthmüller J and Bechstedt F 2007 Appl. Phys. Lett. 91 241915
[16] Li Y F, Yao B, Lu Y M, Cong C X, Zhang Z Z, Gai Y Q, Zheng C J, Li B H, Wei Z P, Shen D Z, Fan X W, Xiao L, Xu S C and Liu Y 2007 Appl. Phys. Lett. 91 021915
[17] He H P, Zhuge F, Ye Z Z, Zhu L P, Wang F Z, Zhao B H and Huang J Y 2006 J. Appl. Phys. 99 023503
[18] Zhang L, Ji G F, Zhao F and Gong Z Z 2011 Chin. Phys. B 20 047102
[19] Li D F, Li B L, Xiao H Y and Dong H N 2011 Chin. Phys. B 20 067101
[20] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[21] Wu H Y, Cheng X L, Hu C H and Zhou P 2010 Physica B 405 606
[22] Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P and Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese)
[23] Sun J, Wang H T, He J L and Tian Y J 2005 Phys. Rev. B 71 125132
[24] Li Y F, Yao B, Lu Y M, Gai Y Q, Cong C X, Zhang Z Z, Zhao D X, Zhang J Y, Li B H, Shen D Z, Fan X W and Tang Z K 2008 J. Appl. Phys. 104 083516
[25] van de Walle C G and Martin R M 1989 Phys. Rev. Lett. 62 2028
[26] Hou Q Y, Zhao C W, Li J J and Wang G 2011 Acta Phys. Sin. 60 047104 (in Chinese)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!