Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 015201    DOI: 10.1088/1674-1056/21/1/015201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Analysis of the wave properties of a new two-lane continuum model with the coupling effect

Arvind Kumar Guptaa)† and Sapna Sharmab)
a Department of Mathematics, Indian Institute of Technology Ropar, Punjab 140001, India; b Department of Mathematics, Birla Institute of Technology & Science Pilani, Rajasthan 333031, India
Abstract  A multilane extension of the single-lane anisotropic continuum model (GK model) developed by Gupta and Katiyar for traffic flow is discussed with the consideration of the coupling effect between the vehicles of different lanes in the instantaneous traffic situation and the lane-changing effect. The conditions for securing the linear stability of the new model are presented. The shock and the rarefaction waves, the local cluster effect and the phase transition are investigated through simulation experiments with the new model and are found to be consistent with the diverse nonlinear dynamical phenomena observed in a real traffic flow. The analysis also focuses on empirically observed two-lane phenomena, such as lane usage inversion and the density dependence of the number of lane changes. It is shown that single-lane dynamics can be extended to multilane cases without changing the basic properties of the single-lane model. The results show that the new multilane model is capable of explaining some particular traffic phenomena and is in accordance with real traffic flow.
Keywords:  two-lane traffic      numerical simulation      lane usage inversion  
Received:  22 June 2011      Revised:  02 August 2011      Accepted manuscript online: 
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  

Cite this article: 

Arvind Kumar Gupta and Sapna Sharma Analysis of the wave properties of a new two-lane continuum model with the coupling effect 2012 Chin. Phys. B 21 015201

[1] Lighthill M J and Whitham G B 1955 Proc. Roy. Soc. Lond. Ser. A 229 317
[2] Helbing D 1996 Phys. Rev. E 53 2366
[3] Payne H J 1971 Simulation Councils Proc. Ser. 1 51
[4] Kerner B S and Konh%#228;user P 1993 Phys. Rev. E 48 2335
[5] Zhang H M 1998 Trans. Res. B 32 485
[6] Berg P, Mason A and Woods A 2000 Phys. Rev. E 61 1056
[7] Richards P I 1956 Operations Research 4 42
[8] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[9] Daganzo C F 1995 Trans. Res. B 29 277
[10] Zhang H M 2000 Trans. Res. B 34 583
[11] Aw A and Rascle M 2000 SIAM J. Appl. Math. 60 916
[12] Jiang R, Wu Q S and Zhu Z 2002 Trans. Res. B 36 405
[13] Zhang H M 2002 Trans. Res. B 36 275
[14] Jiang R and Wu Q S 2004 Acta Mech. Sin. 20 106
[15] Jiang R and Wu Q S 2003 Trans. Res. B 37 85
[16] Zhang H M 2003 Trans. Res. B 37 27
[17] Xue Y and Dai S 2003 Phys. Rev. E 68 066123
[18] Gupta A K and Katiyar V K 2005 J. Phys. A 38 4069
[19] Gupta A K and Katiyar V K 2006 Physica A 368 551
[20] Daganzo C F 1997 Trans. Res. B 31 83
[21] Wu Z 1994 Acta Mech. Sin. 26 149
[22] Tang T Q and Huang H J 2004 Chin. Sci. Bull. 49 2097
[23] Huang H J, Tang T Q and Gao Z Y 2006 Acta Mech. Sin. 22 131
[24] Tang T Q and Huang H J 2005 J. Beijing Univ. Aero. Astro. 31 1121
[25] Tang C F, Jiang R and Wu Q S 2007 Chin. Phys. 16 1570
[26] Han P G, Hua S D and Pan H H 2009 Chin. Phys. B 18 468
[27] Hua S D and Han P G 2009 Chin. Phys. B 18 3724
[28] Zhang H M 2003 Trans. Res. B 37 561
[29] Zhou X, Liu Z and Luo J 2002 J. Phys. A: Math. Gen. 35 4495
[30] Liu G Q, Lyrintzis A S and Michalopoulos P G 1996 Appl. Math. Model. 20 459
[31] Del Castillo J M and Benitez F G 1995 Trans. Res. B 29 373
[32] Herrmann M and Kerner B S 1998 Physica A 255 163
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!