Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 098502    DOI: 10.1088/1674-1056/20/9/098502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Size and temperature effects on electric properties of CdTe/ZnTe quantum rings

Woo-Pyo Hong and Seoung-Hwan Park
Department of Electronics Engineering, Catholic University of Daegu, Hayang, Kyeongbuk 712-702, Korea
Abstract  The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k·p Hamiltonian. The size effects of diameter and height on the strain distributions around the QRs are studied. We find that the interband transition energy, defined as the energy difference between the ground electronic and the ground heavy-hole subbands, increases with the increasing QR inner diameter regardless of the temperature, while the interband energy decreases with the increasing QR height. This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effects. Our model, in the framework of the finite element method and the theory of elasticity of solids, shows a good agreement with the temperature-dependent photoluminescence measurement of the interband transition energies.
Keywords:  quantum ring      eight-band k·p  model      finite-element method      strain and temperature effects      electronic structure  
Received:  30 March 2011      Revised:  13 April 2011      Accepted manuscript online: 
PACS:  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  78.20.Bh (Theory, models, and numerical simulation)  

Cite this article: 

Woo-Pyo Hong and Seoung-Hwan Park Size and temperature effects on electric properties of CdTe/ZnTe quantum rings 2011 Chin. Phys. B 20 098502

[1] Grbic B, Leturcq R, Ihn T, Ensslin K, Reuter D and Wieck A D 2008 Physica E 40 1273
[2] Warburton R J, Schulhauser C, Haft D, Schaflein C, Karrai K, Garcia J H, Schoenfeld W and Petroff P M 2002 Phys. Rev. B 65 113303
[3] Troiani F, Hohenester U and Molinari E 2000 Phys. Rev. B 62 R2263
[4] Kerr W E, Pancholi A and Stoleru V G 2006 Physica E 35 139
[5] Mackowski S 2002 Thin Solid Films 412 96
[6] Borkovska L V, Korsunska N O, Sadofyev Y G, Beyer R, Weber J, Kryshtab T, Andraca-Adame J A, Kazakov P and Kushnirenko V I 2007 Phys. Stat. Sol. (b) 244 1700
[7] Nguyen T A, Mackowski S, Hoang T B, Jackson H E, Smith L M and Karczewski G 2007 Phys. Rev. B 76 245320
[8] Brault J, Gendry M, Grenet G, Hollinger G, Olivares J, Salem B, Benyattou T and Bremond G 2002 J. Appl. Phys. 92 506
[9] Lee H S, Lee K H, Choi J C, Park H L, Kim T W and Choo D C 2002 Appl. Phys. Lett. 81 3750
[10] Karczewski G, Ma'ckowski S, Kutrowski M, Wojtowicz T and Kossut J 1999 it Appl. Phys. Lett. 74 3011
[11] Lee H S, Park H L and Kim T W 2004 Appl. Phys. Lett. 85 5598
[12] Lee H S, Park H L and Kim T W 2007 Appl. Phys. Lett. 90 181909
[13] Lee H S, Park H L and Kim T W 2008 Appl. Phys. Lett. 92 052108
[14] Kim T W, Lee E H, Lee K H, Kim J S and Park H L 2004 Appl. Phys. Lett. 84 595
[15] Hong W P and Park S H 2009 J. Korean Phys. Soc. 55 1607
[16] Hong W P and Park S H 2009 J. Korean Phys. Soc. 55 2496
[17] Park S H and Hong W P 2009 J. Korean Phys. Soc. 55 2517
[18] Park S H and Hong W P 2010 Jpn. J. Appl. Phys. 49 012801
[19] Park S H and Hong W P 2010 Chin. Phys. Lett. 27 098502
[20] Hong W P and Park S H 2009 J. Korean Phys. Soc. 57 178
[21] Bahder T B 1990 Phys. Rev. B 41 11992
[22] Van de Walle C G 1989 Phys. Rev. B 39 1871
[23] Woo J T, Song S H, Lee I, Kim T W, Yoo K H, Lee H S and Park H L 2007 J. Appl. Phys. 102 033521
[24] Li T, Lozykowski H J and Reno J L 1992 Phys. Rev. B 46 6961
[25] de Paiva R, Nogueira R A, de Oliveira C, Leite Alves H W, Alves J L A, Scolfaro L M R and Leite J R 2002 Brazilian J. of Phys. 32 405
[26] Yamada M, Yamamoto K and Abe K 1977 Appl. Phys. 10 1309
[27] Greenough R D and Palmer S B 1973 Appl. Phys. 6 587
[28] Huebner K H, Dewhirst D L, Smith D E and Byrom T G 2001 The Finite Element Method for Engineers (New York: Wiley) p. 250
[29] Noda S, Abe T and Tamura M 1998 Phys. Rev. B 58 7181
[30] Johnson H T, Freund L B, Akyüz C D and Zaslavsky A 1998 J. Appl. Phys. 92 5819
[31] Jin J 2002 The Finite Element Method in Electromagnetics (London: Wiley-IEEE Press) p. 223
[32] Kuo M K, Lin T R, Hong K B, Liao B T, Lee H T and Yu C H 2006 Semicond. Sci. Technol. 21 626
[33] Allahverdi cC and Yükselici M H 2008 N New J. Phys. 10 103029
[34] Patil S P and Melnik R V N 2009 Phys. Status Solidi A 206 960
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!