Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087501    DOI: 10.1088/1674-1056/20/8/087501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic and transport properties of bilayered manganites La1.2Sr1.8Mn2-xGaxO7 (x=0, 0.08)*

Zheng Lin(郑琳)a), Zhou Min(周敏)a), Zhao Jian-Jun(赵建军)a), Cheng Zhao-Hua(成昭华)b), Zhang Xiang-Qun(张向群)b), Xing Ru(邢茹)a), Zhang Xue-Feng(张雪峰)c), and Lu Yi(鲁毅)a)
a Department of Physics, Baotou Normal University, Baotou 014030, China; b State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; c Inner Mongolia Key Laboratory for Utilization of Bayan Obo Multi-Metallic Resources: Elected State Key Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
Abstract  The magnetic and electrical properties of nonmagnetic Ga+3 ion substitution for Mn site are investigated in the bilayer manganite La1.2Sr1.8Mn2O7. When the Mn is substituted by Ga, the ferromagnetic property obviously weakens, the magnetic transition temperature decreases and a spin-glass behaviour occurs at low temperature. Meanwhile, doping causes the resistivity to dramatically increase, the metal–insulator transition temperature to disappear, and a greater magneto-resistance effect to occur at low temperature. These effects result from the fact that Ga substitution dilutes the magnetic active Mn–O–Mn network and weakens the double exchange interaction, and further suppresses ferromagnetic ordering and metallic conduction.
Keywords:  magnetic property      electrical property      magnetoresistance effect      metal–insulator transition  
Received:  17 February 2011      Revised:  13 April 2011      Accepted manuscript online: 
PACS:  75.30.Et (Exchange and superexchange interactions)  
  73.40.Qt  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50862007) and the Inner Mongolia Natural Science Foundation of China (Grant No. 2009MS0101).

Cite this article: 

Zheng Lin(郑琳), Zhou Min(周敏), Zhao Jian-Jun(赵建军), Cheng Zhao-Hua(成昭华), Zhang Xiang-Qun(张向群), Xing Ru(邢茹), Zhang Xue-Feng(张雪峰), and Lu Yi(鲁毅) Magnetic and transport properties of bilayered manganites La1.2Sr1.8Mn2-xGaxO7 (x=0, 0.08)* 2011 Chin. Phys. B 20 087501

[1] Moritomo Y, Asamitsu A, Kuwahara H and Tokura Y 1996 Nature 380 141
[2] Sunil Nair and Banerjee A 2004 Phys. Rev. B 70 104427
[3] Joongoe D, Kim W S and Hur N H 2001 Phys. Rev. B 65 24404
[4] Kubota M, Oohara Y, Yoshizawa H, Fujioka H, Hirota K, Moritomo Y and Endoh Y 2003 Phys. Rev. Lett. 91 047201
[5] Zhang J, Wang F W, Zhang P L and Yan Q W 2000 Mater. Sci. Eng. B 76 6
[6] Asano H, Hayakawa J and Matsui M 1998 Phys. Rev. B 57 1052
[7] Subhayan B, Sandip C, Chatterjee P, Dutta P, Joshi Amish G, Nigam A K, De S K and Chatterjee S 2002 Phys. Rev. B 66 214403
[8] Zhang J, Wang F W, Zhang P L and Yan Q W 1999 J. Appl. Phys. 86 1604
[9] Onose Y, He J P, Kaneko Y, Arima T and Tokura 2005 Appl. Phys. Lett. 86 242502
[10] Sundar M S, Brajendra S and Sahv R K 2007 J. Appl. Phys. 101 09G516
[11] Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, TamuraM and Tokura Y 1996 Science bf 274 1698
[12] Wang A H, Liu Y, Zhang Z Y, Long Y and Cao G H 2004 Solid State Commun. 130 293
[13] Lee S, Hwang H Y, Shraiman Boris I, Ratcliff W D and Cheong S W 1999 Phys. Rev. Lett. 82 4508
[14] Hwang H Y, Cheong S W, Ong N P and Batlogg B 1996 Phys. Rev. Lett. 77 2041
[15] Han L A, Chen C L, Dong H Y, Wang J Y and Gao G M 2008 Physica B 403 2614
[1] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[2] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[3] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[4] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[5] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[6] Effect of pressure on the electrical properties of flexible NiPc thin films fabricated by rubbing-in technology
Khasan S Karimov, Fahmi F Muhammadsharif, Zubair Ahmad, M Muqeet Rehman, and Rashid Ali. Chin. Phys. B, 2021, 30(1): 014703.
[7] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[8] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[9] Dielectric properties of nucleated erythrocytes as simulated by the double spherical-shell model
Jia Xu(徐佳), Weizhen Xie(谢伟珍), Yiyong Chen(陈一勇), Lihong Wang(王立洪), and Qing Ma(马青). Chin. Phys. B, 2020, 29(12): 128703.
[10] Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study
Han-Xing Zhang(张汉星), Chao-Hao Hu(胡朝浩), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2018, 27(8): 083601.
[11] Synthesis of N-type semiconductor diamonds with sulfur, boron co-doping in FeNiMnCo-C system at high pressure and high temperature
He Zhang(张贺), Shangsheng Li(李尚升), Taichao Su(宿太超), Meihua Hu(胡美华), Hongan Ma(马红安), Xiaopeng Jia(贾晓鹏), Yong Li(李勇). Chin. Phys. B, 2017, 26(5): 058102.
[12] The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds
Xin-Qi Zheng(郑新奇), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(2): 027501.
[13] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[14] Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation
Chao Li(李超), Jun-Jie Sun(孙俊杰), Duo Chen(陈铎), Guang-Bing Han(韩广兵), Shu-Yun Yu(于淑云), Shi-Shou Kang(康仕寿), Liang-Mo Mei(梅良模). Chin. Phys. B, 2016, 25(8): 088201.
[15] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
No Suggested Reading articles found!