Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128703    DOI: 10.1088/1674-1056/abbbf0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dielectric properties of nucleated erythrocytes as simulated by the double spherical-shell model

Jia Xu(徐佳)1, Weizhen Xie(谢伟珍)1, Yiyong Chen(陈一勇)1, Lihong Wang(王立洪)2, and Qing Ma(马青)1,
1 School of Medicine, Ningbo University, Ningbo 315211, China; 2 School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
Abstract  The dielectric properties of nucleated erythrocytes from bullfrogs were measured in a frequency range of 10 kHz-110 MHz. The complex permittivity (ε*), complex conductivity ($\kappa^*$), and complex resistivity (ρ*) were analyzed and compared in the 10.63% to 37.58% haematocrit (Hct) range. The relaxation behavior, the passive electrical properties, and the cellular structure parameters, including the cell membrane, the cytoplasm, the nuclear membrane, and the nucleoplasm of the nucleated erythrocyte suspensions were investigated. The method used is based on the binomial Cole-Cole equation and the double spherical-shell physical models. Upon the elimination of the electrode polarization effect, two definite relaxations related to the interfacial polarization are observed on low-and high-frequency dispersions. The permittivity values and the characteristic frequency values differ by one order of magnitude: the low-frequency relaxation increments [∆ ε 1= (5.63 1.43)× 103] and the characteristic frequency [f c1= (297.06 14.48) kHz] derived from the cell membrane, the high-frequency relaxation increments [∆ ε 2 =(5.21 1.20)× 102] and the characteristic frequency [f c2=(3.73 0.06) MHz] derived from the dielectric response to the external electric field of the nuclear membrane, respectively. Moreover, the other core dielectric parameters, such as the relative permittivity of the cell membrane [ε m= (7.57 0.38)] and the nuclear envelope [ε ne= (23.59 4.39)], the conductivity of the cytoplasm (hemoglobin, $\kappa_\rm Hb= (0.50 \pm 0.13)$ S/m] and the nuclear endoplasm [$\kappa_\rm np= (2.56 \pm 0.75)$ S/m], and the capacitance of the bilayer membranes [C m: (0.84 0.04) μ F/cm2], and C ne: (0.52 0.10) μ F/cm2] were also accurately and reliably measured. This work presents a feasible method to evaluate the dielectric parameters and the cellular structure of the erythrocytes of bullfrogs. Moreover, it paves the way for new studies on the haematology of frogs and the detection of nucleated cells via dielectric impedance spectroscopy.
Keywords:  dielectric impedance spectroscopy      bullfrog erythrocytes      the double spherical-shell model      passive electrical property  
Received:  23 July 2020      Revised:  16 September 2020      Accepted manuscript online:  28 September 2020
PACS:  87.19.rf (Dielectric properties)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51277099 and 52007087), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY20C110001 and LSY19A010002), the Natural Science Foundation of Ningbo City, China (Grant Nos. 2019A610349 and 202003N4116), the Fund from the Educational Commission of Zhejiang Province, China (Grant No. Y202044047), and the Fundamental Research Funds for the Provincial Universities of Zhejiang Province, China.
Corresponding Authors:  Corresponding author. E-mail: maqing@nbu.edu.cn   

Cite this article: 

Jia Xu(徐佳), Weizhen Xie(谢伟珍), Yiyong Chen(陈一勇), Lihong Wang(王立洪), and Qing Ma(马青) Dielectric properties of nucleated erythrocytes as simulated by the double spherical-shell model 2020 Chin. Phys. B 29 128703

[1] Zhbanov A and Yang S IEEE Trans. Biomed. Eng. 67 2965 DOI: 10.1109/TBME.2020.29744802020
[2] Torquato S and Haslach H Appl. Mech. Rev. 55 B62 DOI: 10.1115/1.14833422002
[3] Salahuddin S, O'Halloran M, Porter E, Farrugia L, Bonello J, Sammut C V and Wismayer P S IEEE Trans. Dielect. Electr. Insul. 24 3283 DOI: 10.1109/TDEI.2017.0065822017
[4] Ma Q, Watanabe M and Suzaki T Chin. J. Biomed. Eng. 22 309 DOI: 10.3969/j.issn.0258-8021.2003.04.0042003
[5] Bielinska I Phys. Med. Biol. 32 623 DOI: 10.1088/0031-9155/32/5/0081987
[6] Asami K, Takahashi Y and Takashima S Biochim. Biophys. Acta 1010 49 DOI: 10.1016/0167-4889(89)90183-31989
[7] Asami K J. Membrane Biol. 249 31 DOI: 10.1007/s00232-015-9843-42016
[8] Gimsa J, Titipornpun K, Stubbe M and Gimsa U Electrophoresis 39 2253 DOI: 10.1002/elps.2018001922018
[9] David M, Levy E, Feldman Y, Ben Ishai P, Zelig O, Yedgar S and Barshtein G Physiol. Meas. 38 1335 DOI: 10.1088/1361-6579/aa707a2017
[10] Schwan H P Physical Techniques in Biological Research, ed. Nastuk W L (New York: Acdemic) pp. 323-407 DOI: 10.1016/B978-1-4831-6743-5.50013-71963
[11] Wolf M, Gulich R, Lunkenheimer P and Loidl A Biochim. Biophys. Acta 1810 727 DOI: 10.1016/j.bbagen.2011.05.0122011
[12] Guo F, Yao C, Li C and Mi Y Transactions of China Electrotechnical Society 28 182 DOI: 10.19595/j.cnki.1000-6753.tces.2013.11.0252013
[13] Cole K S and and Cole R H J. Chem. Phys. 9 341 DOI: 10.1063/1.17509061941
[14] Cole K S and Cole R H J. Chem. Phys. 10 98 DOI: 10.1063/1.17236771942
[15] Guan H L, Chen X R, Jiang T, Du H, Paramane A and Zhou H Chin. Phys. B 29 075204 DOI: 10.1088/1674-1056/ab8a3f2020
[16] Furhaj A S, Muhammad K, Muhammad S S, H M Noor ul H K A, Sameen A, Ayesha P, Jalil ur R, Muhammad A K and Zaheer A G Chin. Phys. B 28 088701 DOI: 10.1088/1674-1056/28/8/0887012019
[17] Montalv\ ao M F and Malafaia G Environ. Sci. Pollut. R. 24 23411 DOI: 10.1007/s11356-017-0124-x2017
[18] Liu H, Shi F, Tang X, Zheng S, Kolb J and Yao C Bioelectrochemistry 135 107570 DOI: 10.1016/j.bioelechem.2020.1075702020
[19] Yao C, Hu X, Li C, Yan M and Sun C Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 1032 DOI: 10.1109/IEMBS.2008.46493352008
[20] Zhao K, Bai W and Mi H Bioelectrochemistry 69 49 DOI: 10.1016/j.bioelechem.2005.10.0042006
[21] Wagner K W Archiv Für Elektrotechnik (Archive for Electrical Engineering) 2 371 DOI: 10.1007/BF016573221914
[22] Salimi E, Braasch K, Butler M, Thomson D J and Bridges G E Biomicrofluidics 10 014111 DOI: 10.1063/1.49404322016
[23] Sabuncu A C, Stacey M, Craviso G L, Semenova N, Vernier P T, Leblanc N, Chatterjee I and Zaklit J Bioelectrochemistry 119 84 DOI: 10.1016/j.bioelechem.2017.09.0012018
[24] Stacey M W, Sabuncu A C and Beskok A Biochim. Biophys. Acta 1840 146 DOI: 10.1016/j.bbagen.2013.08.0312014
[25] Plattner H, Artalejo A R and Neher E J. Cell Biol. 139 1709 DOI: 10.1083/jcb.139.7.17091997
[26] Zhbanov A and Yang S Anal. Methods-UK 9 3302 DOI: 10.1039/C7AY00714K2017
[1] Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route
Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani. Chin. Phys. B, 2019, 28(8): 088701.
[2] Structure instability-induced high dielectric properties in[001]-oriented 0.68Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 crystals
Xiao-Juan Li(李晓娟), Xing Fan(樊星), Zeng-Zhe Xi(惠增哲), Peng Liu(刘鹏), Wei Long(龙伟), Pin-Yang Fang(方频阳), Rui-Hua Nan(南瑞华). Chin. Phys. B, 2019, 28(5): 057701.
[3] Effects of A1 site occupation on dielectric and ferroelectric properties of Sr4CaRTi3Nb7O30 (R=Ce, Eu) tungsten bronze ceramics
Fang Yu-Jiao (方玉娇), Gong Gao-Shang (龚高尚), Gebru Zerihun, Yuan Song-Liu (袁松柳). Chin. Phys. B, 2014, 23(12): 128701.
[4] Characterization of the BaBiO3-doped BaTiO3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with Tc=155℃
Yuan Chang-Lai(袁昌来), Liu Xin-Yu(刘心宇), Zhou Chang-Rong(周昌荣), Xu Ji-Wen(许积文), and Yang Yun(杨云) . Chin. Phys. B, 2011, 20(4): 048701.
No Suggested Reading articles found!