Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 088201    DOI: 10.1088/1674-1056/25/8/088201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation

Chao Li(李超), Jun-Jie Sun(孙俊杰), Duo Chen(陈铎), Guang-Bing Han(韩广兵), Shu-Yun Yu(于淑云), Shi-Shou Kang(康仕寿), Liang-Mo Mei(梅良模)
School of Physics and National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites. This method involves coating Fe2O3 nanorods with a uniform silica layer, reduction in 10% H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4, and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods. The fabricated nanocomposites are further characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectroscopy, and inductively coupled plasma mass spectroscopy. The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B (RhB) at room temperature, and maintain superior catalytic activity even after six cycles. In addition, these samples could be easily separated from the catalytic system by an external magnet and reused, which shows great potential applications in treating waste water.
Keywords:  trepang-like nanocomposites      core-shell nanoparticles      catalytic property      magnetic property  
Received:  13 January 2016      Revised:  17 April 2016      Accepted manuscript online: 
PACS:  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  81.20.-n (Methods of materials synthesis and materials processing)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11174183), the 111 Project (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.
Corresponding Authors:  Shi-Shou Kang     E-mail:  skang@sdu.edu.cn

Cite this article: 

Chao Li(李超), Jun-Jie Sun(孙俊杰), Duo Chen(陈铎), Guang-Bing Han(韩广兵), Shu-Yun Yu(于淑云), Shi-Shou Kang(康仕寿), Liang-Mo Mei(梅良模) Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation 2016 Chin. Phys. B 25 088201

[1] Liu S, Chen G Y, Prasad P N and Swihart M T 2011 Chem. Mater. 23 4098
[2] Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R and Zhang W L 2012 Chin. Phys. B 21 118101
[3] Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, and Huang W 2015 Chin. Phys. B 24 115202
[4] Zhang Z, Liu Q and Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese)
[5] Shen Z R, Matsuki Y, Higashimine K, Miyake M and Shimoda T 2012 Chem. Lett. 41 644
[6] Zhang Q F, Large N, Nordlander P and Wang H 2014 J. Phys. Chem. Lett. 5 370
[7] Fang Q L, Cheng Q, Xu H J and Xuan S H 2014 Dalton Trans. 43 2588
[8] Hu H B, Wang Z H, Pan L, Zhao S P and Zhu S Y 2010 J. Phys. Chem. C 114 7738
[9] Zhang Y L, Yan W W, Sun Z M, Li X C and Gao J P 2014 RSC Adv. 4 38040
[10] Dhanda R and Kidwai M 2015 J. Mater. Chem. A 3 19563
[11] Zhang S H, Gai S L, He F, Dai Y L, Gao P, Li L, Chen Y J and Yang P P 2014 Nanoscale 6 7025
[12] Xu D, Liu Z, Yang H, Yang Q, Zhang J, Fang J, Zou S and Sun K 2009 Angew. Chem. Int. Ed. 48 4217
[13] Chen G Z, Desinan S, Nechache R, Rosei R, Rosei F and Ma D L 2011 Chem. Commun. 47 6308
[14] Krishna R, Fernandes D M, Dias C, Ventura J, Ramana E V, Freire C and Titus E 2015 Int. J. Hydrogen Energy 40 4996
[15] Lin Y Y, Qiao Y, Wang Y J, Yan Y and Huang J B 2012 J. Mater Chem. 22 18314
[16] Ai L H, Yue H T and Jiang J 2012 J. Mater. Chem. 22 23447
[17] Tang S C, Vongehr S, Zheng Z, Liu H J and Meng X K 2010 J. Phys. Chem. C 114 18338
[18] Zheng J M, Dong Y L, Wang W F, Ma Y H, Hu J, Chen X J and Chen X G 2013 Nanoscale 5 4894
[19] Yue C, Yuan Q, Li Y J, Tu J C, Zhao L, Li N and Li X T 2012 J. Colloid Interface Sci. 383 96
[20] Rathore P S, Patidar R and Thakore S 2014 RSC Adv. 4 41111
[21] Bayat A, Fard M S, Ehyaei N and Hashemi M M 2015 RSC Adv. 5 22503
[22] Yun G, Hassan Z, Lee J, Kim J, Lee N S, Kim N H, Baek K, Hwang I, Park C G and Kim K 2014 Angew. Chem. Int. Ed. 53 6414
[23] Zhang Z W, Zhou Y M, Zhang Y W, Zhou S J, Xiang S M, Sheng X L and Jiang P 2015 J. Mater. Chem. A 3 4642
[24] Li X Z, Wu K L, Ye Y and Wei X W 2014 Cryst. Eng. Commun. 16 4406
[25] Zhang S H, Gai S L, He F, Ding S J, Li L and Yang P P 2014 Nanoscale 6 11181
[26] Mao Y, Jiang W Q, Xuan S H, Fang Q L, Leung K C F, Ong B S, Wang S and Gong X L 2015 Dalton Trans. 44 9538
[27] Jia C J, Sun L D, Yan Z G, You L P, Luo F, Han X D, Pang Y C, Zhang Z and Yan C H 2005 Angew. Chem. Int. Ed. 44 4328
[28] Park J Y, Choi E S, Baek M J and Lee J H 2009 Mater. Lett. 63 379
[29] Jiang H L, Akita T and Xu Q 2011 Chem. Commun. 47 10999
[30] An Q, Zhang P, Li J M, Ma W F, Guo J, Hu J and Wang C C 2012 Nanoscale 4 5210
[31] Chi Y, Yuan Q, Li Y J, Tu J C, Zhao L, Li N and Li X T 2012 J. Colloid Int. Sci. 383 96
[32] Adeyeye A O, Bland J A C, Daboo C and Hasko D G 1997 Phys. Rev. B 56 3265
[33] Ai L H, Yue H T and Jiang J 2012 J. Mater. Chem. 22 23447
[34] Zhang Y, Zhu P L, Chen L, Li G, Zhou F R, Lu D Q, Sun R, Zhou F and Wong C P 2014 J. Mater. Chem. A 2 11966
[35] Mao Y, Jiang W Q, Xuan S H, Fang Q L, Leung K C F, Ong B S, Wang S and Gong X L 2015 Dalton Trans. 44 9538
[36] Kitchin J R, Norskov J K, Barteau M A and Chen J G 2004 Phys. Rev. Lett. 93 156801
[37] Wang L M, Bai J, Lechtken A, Huang W, Schooss D, Kappes M M, Zeng X C and Wang L S 2009 Phys. Rev. B 79 033413
[1] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[2] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[3] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[4] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[5] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[6] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[7] Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study
Han-Xing Zhang(张汉星), Chao-Hao Hu(胡朝浩), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2018, 27(8): 083601.
[8] The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds
Xin-Qi Zheng(郑新奇), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(2): 027501.
[9] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
[10] A-site ordered perovskiteCaCu3Cu2Ir2O12-δ with square-planar and octahedral coordinated Cu ions
Qing Zhao(赵庆), Yun-Yu Yin(殷云宇), Jian-Hong Dai(戴建洪), Xi Shen(沈希), Zhi-Wei Hu(胡志伟), Jun-Ye Yang(杨俊叶), Qing-Tao Wang(王清涛), Ri-Cheng Yu(禹日成), Xiao-Dong Li(李晓东), You-Wen Long(龙有文). Chin. Phys. B, 2016, 25(2): 020701.
[11] Improvement in coercivity,thermal stability,and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition
Beibei Zhou(周贝贝), Xiangbin Li(李向斌), Xuejing Cao(曹学静), Gaolin Yan(严高林), Aru Yan(闫阿儒). Chin. Phys. B, 2016, 25(11): 117504.
[12] Catalytic reduction of N2O by CO over PtlAum- clusters:A first-principles study
Mi Hong (米鸿), Wei Shi-Hao (韦世豪), Duan Xiang-Mei (段香梅), Pan Xiao-Yin (潘孝胤). Chin. Phys. B, 2015, 24(9): 098201.
[13] Effect of milling atmosphere on structural and magnetic properties of Ni–Zn ferrite nanocrystalline
Abdollah Hajalilou, Mansor Hashim, Reza Ebrahimi-Kahrizsangi, Mohamad Taghi Masoudi. Chin. Phys. B, 2015, 24(4): 048102.
[14] Magnetocaloric effects in RTX intermetallic compounds (R=Gd-Tm, T=Fe-Cu and Pd, X=Al and Si)
Zhang Hu (张虎), Shen Bao-Gen (沈保根). Chin. Phys. B, 2015, 24(12): 127504.
[15] Direct evidence of high temperature superconductivity in one-unit-cell FeSe films on SrTiO3 substrate by transport and magnetization measurements
Xing Ying (邢颖), Wang Jian (王健). Chin. Phys. B, 2015, 24(11): 117404.
No Suggested Reading articles found!