CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of the Mn/Co ratio on the magnetic transition and magnetocaloric properties of Mn1+xCo1-xGe alloys |
Ma Sheng-Can(马胜灿), Wang Dun-Hui(王敦辉)†, Xuan Hai-Cheng(轩海成), Shen Ling-Jia(沈凌佳), Cao Qing-Qi(曹庆琪), and Du You-Wei(都有为) |
National Laboratory of Solid State Microstructures and Key Laboratory of Nanomaterials for Jiangsu Province, Nanjing University, Nanjing 210093, China |
|
|
Abstract We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1-xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferromagnetic to paramagnetic states with large changes of magnetization are observed at room temperature. Further increasing the content of Mn (x=0.11) gives rise to a single second-order magnetic transition. Interestingly, large low-field magnetic entropy changes with almost zero magnetic hysteresis are observed in these alloys. The effects of Mn/Co ratio on magnetic transition and magnetocaloric effects are discussed in this paper.
|
Received: 20 February 2011
Revised: 10 March 2011
Accepted manuscript online:
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50701022, 51001019, and 50831006) and the
Program for New Century Excellent Talents of China (Grant No. NCET-08-0278). |
Cite this article:
Ma Sheng-Can(马胜灿), Wang Dun-Hui(王敦辉), Xuan Hai-Cheng(轩海成), Shen Ling-Jia(沈凌佳), Cao Qing-Qi(曹庆琪), and Du You-Wei(都有为) Effects of the Mn/Co ratio on the magnetic transition and magnetocaloric properties of Mn1+xCo1-xGe alloys 2011 Chin. Phys. B 20 087502
|
[1] |
Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
|
[2] |
Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
|
[3] |
Tegus O, Brück E, Buschow K H J and de Boer F R 2002 it Nature 415 150
|
[4] |
Yüzüak E, Emre B, Elerman Y and Yücel A 2010 it Chin. Phys. B 19 057501
|
[5] |
Yüzüak E, Dincer I and Elerman Y 2010 Chin. Phys. B 19 037502
|
[6] |
Hamer J B A, Daou R, "Ozcan S, Mathur N D, Fray D J and Sandeman K G 2009 J. Magn. Magn. Mater. 321 3535
|
[7] |
Kanomata T, Ishigaki H, Suzuki T, Yoshida H, Abe S and Kaneko T 1995 J. Magn. Magn. Mater. 140—144 131
|
[8] |
Trung N T, Biharie V, Zhang L, Caron L, Buschow K H J and Brück E 2010 Appl. Phys. Lett. 96 162507
|
[9] |
Trung N T, Zhang L, Caron L, Buschow K H J and Brück E 2010 Appl. Phys. Lett. 96 172504
|
[10] |
Lin S, Tegus O, Brück E, Dagula W, Gortenmulder T J and Buschow K H J 2006 IEEE Trans. Magn. 42 3776
|
[11] |
Wang J T, Wang D S, Chen C, Nashima O, Kanomata T, Mizuseki H and Kawazoe Y 2006 Appl. Phys. Lett. 89 262504
|
[12] |
Sharma V K, Chattopadhyay M K, Shaeb K H B, Chouhan A and Roy S B 2006 Appl. Phys. Lett. 89 222509
|
[13] |
Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T and Ishida K 2006 it Nature 439 957
|
[14] |
Niziol S, Zieba A, Zach R, Baj M and Dmowski L 1983 J. Magn. Magn. Mater. 38 205
|
[15] |
Koyama K, Sakai M, Kanomata T and Watanabe K 2004 Jpn. J. Appl. Phys. Part 1 43 8036
|
[16] |
Fang Y K, Yeh C C, Chang C W, Chang W C, Zhu M G and Li W 2007 Scripta Mater. 57 453
|
[17] |
Liu E K, Zhu W, Feng L, Chen J L, Wang W H, Wu G H, Liu H Y, Meng F B, Luo H Z and Li Y X 2010 Europhys. Lett. 91 17003
|
[18] |
Han Z D, Wang D H, Zhang C L, Xuan H C, Gu B X and Du Y W 2007 Appl. Phys. Lett. 90 042507
|
[19] |
Xuan H C, Zheng Y X, Ma S C, Cao Q Q, Wang D H and Du Y W 2010 J. Appl. Phys. 108 103920
|
[20] |
Krenke T, Acet M, Wassermann E F, Moya X, Ma nosa L and Planes A 2005 Phys. Rev. B 72 014412
|
[21] |
Krenke T, Acet M, Wassermann E F, Moya X, Ma nosa L and Planes A 2006 Phys. Rev. B 73 174413
|
[22] |
Kaprzyk S and Niziol S 1990 J. Magn. Magn. Mater. bf 87 267
|
[23] |
Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X and Shen B G 2007 Appl. Phys. Lett. 90 032507
|
[24] |
de Oliveira N A and von Ranke P J 2008 Phys. Rev. B bf 77 214439
|
[25] |
Amaral J S and Amaral V S 2009 Appl. Phys. Lett. 94 042506
|
[26] |
Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Ma nosa L and Planes A 2005 Nat. Mater. 4 450
|
[27] |
Pathak A K, Dubenko I, Karaca H E, Stadler S and Ali N 2010 Appl. Phys. Lett. 97 062505
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|