Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087301    DOI: 10.1088/1674-1056/20/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic plasmon mode resonance and power transmission in a nanosandwich waveguide

Fu Fei-Ya(付非亚)a)b),Zhou Wen-Jun(周文君)a)b), Liu An-Jin(刘安金)a)b),Chen Wei(陈微)a)b), Wang Yu-Fei(王宇飞)a)b),Yan Xin-Yu(晏新宇)a)b),and Zheng Wan-Hua(郑婉华)a)b)
Nano-optoelectronics Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The magnetic plasmon (MP) modes in the metal—dielectric—metal nanosandwich structure are investigated numerically, and the principle of energy resonance in such a resonator is proposed. An equivalent inductance capacitance circuit analysis method is proposed and the results are in agreement with the numerical simulations. Based on the MP resonance in such a structure, a nanosandwich chain waveguide is designed. Gold and silver are chosen as the metal materials. The power transmission efficiency of the nanosandwich waveguide can be as high as 0.546 in a specific nanosandwich unit cell, even when the metal absorption loss is large, which is the perspective of the new waveguides and lasers based on MP modes.
Keywords:  nanosandwich      magnetic plasmon modes      magnetic resonance      waveguide  
Received:  07 March 2011      Revised:  18 April 2011      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.40.Rw (Metal-insulator-metal structures)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Key Basic Research Special Fund (Grant No. 2011CB922000), the National Natural Science Foundation of China (Grant Nos. 61025025 and 60838003), and the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z410 and 2007AA03Z408).

Cite this article: 

Fu Fei-Ya(付非亚), Zhou Wen-Jun(周文君), Liu An-Jin(刘安金), Chen Wei(陈微), Wang Yu-Fei(王宇飞), Yan Xin-Yu(晏新宇), and Zheng Wan-Hua(郑婉华) Magnetic plasmon mode resonance and power transmission in a nanosandwich waveguide 2011 Chin. Phys. B 20 087301

[1] Chen J J, Li Z and Gong Q H 2009 Chin. Phys. B 18 3535
[2] Ma J Y, Xu C, Liu S J, Zhang D W, Jin Y X, Fan Z X and Shao J D 2009 Chin. Phys. B 18 1029
[3] Li T, Li J Q, Wang F M, Wang Q J, Liu H, Zhu S N and Zhu Y Y 2007 Appl. Phys. Lett. bf 90 25112
[4] Dolling G, Wegner M, Schadle A, Bureger S and Linden S 2006 Appl. Phys. Lett. 89 231118
[5] Liu H, Genov D A, Wu D M, Liu Y M, Steele J M, Sun C, Zhu S N and Zhang X 2006 Phys. Rev. Lett. 97 243902
[6] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M and Brueck S R J 2005 Phys. Rev. Lett. 95 137440
[7] Yuan H K, Chettiar U K, Cai W, Kildishev A V, Boltasseva A, Drachev V P and Shalaev V M 2007 Opt. Express 15 1076
[8] Rahachou A I and Zozoulenko I V 2007 J. Opt. A: Pure Appl. Opt. 9 265
[9] Liu H, Li T, Wang Q J, Zhu Z H, Wang S M, Li J Q, Zhu S N, Zhu Y Y and Zhang X 2009 Phys. Rev. B 79 024304
[10] Klein M W, Enkrich C, Wegener M, Soukoulis C M and Linden S 2006 Opt. Lett. 31 1259
[11] Dolling G, Enkrich C, Wegener M, Soukoulis C M and Linden S 2006 Science bf 312 892
[12] Protopapa M L 2009 Appl. Opt. 48 778
[13] Citrin D S 1995 Opt. Lett. 20 901
[14] Weber W H and Ford G W 2004 Phys. Rev. B 70 125429
[15] Fung K H and Chan C T 2007 Opt. Lett. 32 973
[16] Zhu Z H, Liu H, Wang S M, Li T, Cao J X, Ye W M, Yuan X D and Zhu S N 2009 Appl. Phys. Lett. 94 103106
[17] Wang S M, Zhu Z H, Cao J X, Li T, Liu H, Zhu S N and Zhang X 2010 Appl. Phys. Lett. 96 113103
[18] Ordal M A, Bell R J, Alexander Jr R W, Long L L and Querry M R 1985 Opt. Soc. Am. 24 4493
[19] Shalaev V M, Cai W, Chettiar U K, Yuan H, Sarychev A K, Drachev V P and Kildishev A V 2005 Opt. Lett. 30 3356
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[7] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[8] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[11] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[12] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[13] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[14] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[15] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
No Suggested Reading articles found!