Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087102    DOI: 10.1088/1674-1056/20/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic properties of one-dimensional systems with long-range correlated binary potentials

Gong Long-Yan(巩龙)a)c), Tong Pei-Qing(童培庆)b), and Zhou Zi-Cong(周子聪)c)
a College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, Chinab Department of Physics, Nanjing Normal University, Nanjing 210097, China; c Department of Physics, Tamkang University, 151 Ying-Chuan, Tamsui 25137, Taipei, Taiwan, China
Abstract  We study numerically the electronic properties of one-dimensional systems with long-range correlated binary potentials. The potentials are mapped from binary sequences with a power-law power spectrum over the entire frequency range, which is characterized by correlation exponent β. We find the localization length ξ increases with β. At system sizes N→∞, there are no extended states. However, there exists a transition at a threshold βc. When β>βc, we obtain ξ>0. On the other hand, at finite system sizes, ξ ≥ N may happen at certain β, which makes the system “metallic”, and the upper-bound system size N*(β) is given.
Keywords:  electronic properties      long-range correlation      binary potentials      localization  
Received:  20 February 2011      Revised:  19 March 2011      Accepted manuscript online: 
PACS:  71.23.An (Theories and models; localized states)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 10904074 and 10974097), the National Key Basic Research Special Foundation of China (Grant No. 2009CB929501), and the National Science Council (Grant No. 97-2112- M-032-003-MY3).

Cite this article: 

Gong Long-Yan(巩龙龑), Tong Pei-Qing(童培庆), and Zhou Zi-Cong(周子聪) Electronic properties of one-dimensional systems with long-range correlated binary potentials 2011 Chin. Phys. B 20 087102

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Kramer B and MacKinnon A 1993 Rep. Prog. Phys. 56 1469
[3] Belitz D and Kirkpatrick T R 1994 Rev. Mod. Phys. 66 261
[4] Evers F and Mirlin A D 2008 Rev. Mod. Phys. 80 1355
[5] Hofstadter D R 1976 Phys. Rev. B 14 2239
[6] Song W G and Tong P Q 2009 Chin. Phys. B 18 4707
[7] Gong L Y and Tong P Q 2008 Chin. Phys. B 17 674 %Harper
[8] Dunlap D H, Wu H L and Phillips P 1990 Phys. Rev. Lett. 65 88 %Dimer
[9] Kohmoto M L, Kadanoff P and Tang C 1983 Phys. Rev. Lett. 50 1870 %Fibo
[10] Ryu C S, Oh G Y and Lee M H 1992 Phys. Rev. B 46 5162 %TM
[11] de Moura F A B F and Lyra M L 1998 Phys. Rev. Lett. 81 3735 %EXTENDED
[12] Shima H, Nomura T and Nakayama T 2004 Phys. Rev. B 70 075116 %EXTENDED TMM
[13] Nishino S, Yakubo K and Shima H 2009 Phys. Rev. B 79 033105%EXTENDED
[14] Carpena P, Bernaola-Galv'an P and Ivanov P Ch 2004 Phys. Rev. Lett. 93 176804 %level
[15] Liu X L, Xu H, Ma S S and Song Z Q 2006 Acta Phys. Sin. 55 2949 (in Chinese)
[16] Guo Z Z 2008 Chin. Phys. Lett. 25 1079
[17] Carpena P, Bernaola-Galv'an P, Ivanov P C and Stanley H E 2002 Nature 418 955%MIT BINARY
[18] Carpena P, Bernaola-Galv'an P, Ivanov P C and Stanley H E 2003 Nature 421 764 %MIT BINARY
[19] Yamada H 2004 Phys. Rev. B 69 014205
[20] Kaya T 2007 Eur. Phys. J. B 60 313 %ALPHA=2.0
[21] Gong L Y, Zhou Z C, Tong P Q and Zhao S M 2011 Physica A 390 2977
[22] Czir'ok A, Mantegna R N, Havlin S and Stanley H E 1995 Phys. Rev. E 52 446 %Fourier filtering method BINARY
[23] Bell R J and Dean P 1970 Discuss. Faraday Soc. 50 55 %PR
[24] MacKinnon A and Kramer B 1983 Z. Phys. B 53 1 %TMM Renormal
[25] Li W and Holste D 2005 Phys. Rev. E bf71 041910
[26] Zhang Y, Austin R H, Kraeft J, Cox E C and Ong N P 2002 Phys. Rev. Lett. bf89 198102
[27] Porath D, Bezryadin A, De Vries S and Decker C 2000 Nature bf403 635
[28] Fink H W and Sch"oenberger C 1999 Nature bf398 407 %conducting
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[3] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[4] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[5] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[6] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[7] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[8] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[11] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[12] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[13] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[14] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[15] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
No Suggested Reading articles found!