Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087201    DOI: 10.1088/1674-1056/20/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase transition and high temperature thermoelectric properties of copper selenide Cu2-xSe (0 ≤ x ≤ 0.25)

Xiao Xing-Xing(肖星星), Xie Wen-Jie(谢文杰), Tang Xin-Feng(唐新峰), and Zhang Qing-Jie(张清杰)
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Abstract  With good electrical properties and an inherently complex crystal structure, Cu$_{2 - x}$Se is a potential ``phonon glass electron crystal'' thermoelectric material that has previously not attracted much interest. In  this study, Cu$_{2 - x}$Se ($0 \le x \le 0.25$) compounds were synthesized by a melting-quenching method, and then sintered by spark plasma sintering to obtain bulk material. The effect of Cu content on the phase transition  and thermoelectric properties of Cu$_{2 - x}$Se were investigated in the temperature range of 300~K--750~K. The results of X-ray diffraction at room temperature show that Cu$_{2 - x}$Se compounds possess a cubic structure with  a space group of $Fm3m$ (#225) when $0.15 < x \le  0.25$, whereas they adopt a composite of monoclinic and cubic phases when $0 \le x \le 0.15$. The thermoelectric property measurements show that with increasing Cu content,  the electrical conductivity decreases, the Seebeck coefficient increases and the thermal conductivity decreases. Due to the relatively good power factor and low thermal conductivity, the nearly stoichiometric Cu$_{2}$Se compound achieves the highest $ZT$ of 0.38 at 750 K. It is expected that the thermoelectric performance can be further optimized by doping appropriate elements and/or via a nanostructuring approach.
Keywords:  copper selenide      phase transition      thermoelectric properties  
Received:  17 February 2011      Revised:  21 March 2011      Accepted manuscript online: 
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  74.25.fc (Electric and thermal conductivity)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB607501) and the National Natural Science Foundation of China (Grant Nos. 50731006 and 50672118) along with 111 Project (Grant No. B07040).

Cite this article: 

Xiao Xing-Xing(肖星星), Xie Wen-Jie(谢文杰), Tang Xin-Feng(唐新峰), and Zhang Qing-Jie(张清杰) Phase transition and high temperature thermoelectric properties of copper selenide Cu2-xSe (0 ≤ x ≤ 0.25) 2011 Chin. Phys. B 20 087201

[1] Tritt T M, Bottner H and Chen L D 2008 MRS Bull. 33 366
[2] Deng S K, Tang X F and Tang R S 2009 Chin. Phys. B 18 3084
[3] Xie W J, Tang X F and Zhang Q J 2007 Chin. Phys. 16 3549
[4] Liu W S, Zhang B P, Li J F and Liu J 2006 Acta Phys. Sin. 55 645 (in Chinese)
[5] Shi X, Chen L D, Bai S Q and Tang X F 2004 Acta Phys. Sin. 53 1469 (in Chinese)
[6] Haynes W M 2006 CRC Handbook of Chemistry and Physics 87th edn. (Boca Raton: Taylor & Francis)
[7] Vaqueiro P and Powell A V 2010 J. Mater. Chem. 20 9577
[8] Hergert F, Jost S, Hock R and Purwins M 2006 J. Solid State Chem. 179 2394
[9] Glazov V M, Pashinkin A S and Fedorov V A 2000 Inorg. Mater. 36 775
[10] Chakrabarti D I and Laughlin D E 1981 Bull. Alloy Phase Diagrams 2 305
[11] Ohtani T and Shohno M 2004 J. Solid State Chem. 177 3886
[12] Abdullaev G B, Aliyarova Z A and Asadov G A 1967 Phys. Stat. 21 461
[13] Ishikawa T and Miyatani S 1977 J. Phys. Soc. Jpn. 42 159
[14] Akkad F El, Mansour B and Hendeya T 1981 Mater. Res. Bull. 16 535
[15] Danilkin S A 2009 J. Alloys Compd. 467 509
[16] Skomorokhov A N, Trots D M, Knapp M, Bickulova N N and Fuess H 2006 J. Alloys Compd. 421 64
[17] Ohtani T, Tachibana Y, Ogura J, Miyake T, Okada Y and Yokota Y 1998 J. Alloys Compd. 279 136
[18] Machado K D, deLime J C, Grandi T A, Campos C E M, Maurmann C E, Gasperini A A M, Souza S M and Pimenta A F 2004 Acta Cryst. B 60 282
[19] Junod P 1959 Helv. Phys. Acta 32 567
[20] Okamoto K 1971 Jpn. J. Appl. Phys. 10 508
[21] Wu T, Jiang W, Li X Y, Zhou Y F and Chen L D 2007 J. Appl. Phys. 102 103705
[22] Deng S K, Tang X F and Zhang Q J 2007 J. Appl. Phys. 102 043702
[23] Deng S K, Tang X F and Zhang Q J 2008 J. Appl. Phys. 103 073503
[24] Deng S K, Tang X F, Yang P Z and Li M 2009 J. Mater. Sci. 44 939
[25] Vaqueiro P and Powell A V 2010 J. Mater. Chem. 20 9577
[26] Tonejc A, Ogorelec Z and Mestnik B 1975 J. Appl. Cryst. 8 375
[27] Mansour B A 1993 Phys. Stat. Sol. (a) 136 153
[28] Yamamoto K and Kashida S 1991 J. Solid State Chem. 93 202
[29] Oliveria M, McMullan R K and Wuensch B J 1988 Solid State Ionics 28—30 1332
[30] Sakuma T, Aoyama T, Takahashi H, Shimojo Y and Morii Y 1989 Physica B 213—214 399
[31] Danilkin S A, Skomorokhov A N, Hoser A, Fuess H, Rajevac V and Bickulova N N 2003 J. Alloys Compd. 361 57
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
No Suggested Reading articles found!