Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 084207    DOI: 10.1088/1674-1056/20/8/084207
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Quantum frequency up-conversion with a cavity

Bai Yun-Fei(白云飞), Zhai Shu-Qin(翟淑琴), Gao Jiang-Rui(郜江瑞), and Zhang Jun-Xiang(张俊香)
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  The quantum state transfer from subharmonic frequency to harmonic frequency based on asymmetrically pumped second harmonic generation in a cavity is investigated theoretically. The performance of noise-free frequency up-conversion is evaluated by the signal transfer coefficient and the conversion efficiency, in which both the quadrature fluctuation and the average photon number are taken into consideration. It is shown that the quantum property can be preserved during frequency up-conversion via operating the cavity far below the threshold. The dependences of the transfer coefficient and the conversion efficiency on pump parameter, analysing frequency, and cavity extra loss are also discussed.
Keywords:  frequency up-conversion      signal transfer coefficient      conversion efficiency  
Received:  22 March 2011      Revised:  23 June 2011      Accepted manuscript online: 
PACS:  42.65.Lm (Parametric down conversion and production of entangled photons)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974126) and the National Basic Research Program of China (Grant No. 2010CB923102).

Cite this article: 

Bai Yun-Fei(白云飞), Zhai Shu-Qin(翟淑琴), Gao Jiang-Rui(郜江瑞), and Zhang Jun-Xiang(张俊香) Quantum frequency up-conversion with a cavity 2011 Chin. Phys. B 20 084207

[1] Burnham D C and Weinberg D L 1970 Phys. Rev. Lett. 25 84
[2] Liu J H, Liu Q and Gong M L 2011 Acta Phys. Sin. 60 4215 (in Chinese)
[3] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[4] Kaler F S, Haffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 Nature 422 408
[5] Wolfgang T and Gregor W 2001 Quantum Inform. Comput. 1 3
[6] Li X Y, Yang L, Ma X X, Cui L, Ou Z Y and Yu D Y 2009 Phys. Rev. A 79 033817
[7] Lloyd S, Shahriar M S, Shapiro J H and Hemmer P R 2001 Phys. Rev. Lett. 87 167903
[8] Kumar P 1990 Opt. Lett. 15 1476
[9] Julsgaard B, Sherson J, Cirac J I, Fiur'avsek J and Polzik E S 2004 Nature 432 482
[10] Lin L H 2009 Chin. Phys. B 18 3890
[11] Liu H G, Hu M L, Liu B W, Song Y J, Chai L and Wang Q Y 2010 Acta Phys. Sin. 59 3979 (in Chinese)
[12] Fan X J, Ma H, Liu Z B and Tong D M 2009 Chin. Phys. B 18 5342
[13] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2007 Phys. Rev. Lett. 98 193601
[14] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
[15] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[16] Jen H H and Kennedy T A B 2010 Phys. Rev. A 82 023815
[17] Giorgi G, Mataloni P and Martini F D 2003 Phys. Rev. Lett. 90 027902
[18] Huang J M and Kumar P 1992 Phys. Rev. Lett. 68 2153
[19] Tanzilli S, Tittel W, Halder M, Alibart O, Baldi P, Gisin N and Zbinden H 2005 Nature 437 116
[20] Takesue H 2008 Phys. Rev. Lett. 101 173901
[21] Bosenberg W R and Guyer D R 1993 J. Opt. Soc. Am. B 10 1716
[22] Debuisschert T, Sizmann A, Giacobino E and Fabre C 1993 J. Opt. Soc. Am. B 10 1668
[23] Bai Y F, Zhai S Q, Gao J R and Zhang J X 2011 Chin. Phys. B 20 034207
[24] Pooser R C, Marino A M, Boyer V, Jones K M and Lett P D 2009 Phys. Rev. Lett. 103 010501
[25] Gardiner C W and Collett M J 1985 Phys. Rev. A 31 3761
[26] Reynaud S, Fabre C and Giacobino E 1987 J. Opt. Soc. Am. B 4 1520
[27] Collett M J and Gardiner C W 1984 Phys. Rev. A 30 1386
[28] Buchler B C, Huntington E H and Ralph T C 1999 Phys. Rev. A 60 529
[29] Buchler B C, Lam P K and Ralph T C 1999 Phys. Rev. A 60 4943
[30] Paschotta R, Collett M, Kürz P, Fiedler K, Bachor H A and Mlynek J 1994 Phys. Rev. Lett. 72 3807
[31] Li Y, Luo Y, Pan Q and Peng K C 2006 Acta Phys. Sin. 55 5030 (in Chinese)
[1] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[2] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[3] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[4] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[5] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[6] Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2020, 29(6): 064207.
[7] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[8] Improving compatibility between thermoelectric components through current refraction
K Song(宋坤), H P Song(宋豪鹏), C F Gao(高存法). Chin. Phys. B, 2018, 27(7): 077304.
[9] Tunable circularly-polarized turnstile-junction mode converter for high-power microwave applications
Xiao-Yu Wang(王晓玉), Yu-Wei Fan(樊玉伟), Ting Shu(舒挺), Cheng-Wei Yuan(袁成卫), Qiang Zhang(张强). Chin. Phys. B, 2018, 27(6): 068401.
[10] Efficient ternary organic solar cells with high absorption coefficient DIB-SQ as the third component
Hui-Xin Qi(齐慧欣), Bo-Han Yu(余泊含), Sai Liu(刘赛), Miao Zhang(张苗), Xiao-Ling Ma(马晓玲), Jian Wang(王健), Fu-Jun Zhang(张福俊). Chin. Phys. B, 2018, 27(5): 058802.
[11] Macro-performance of multilayered thermoelectric medium
Kun Song(宋坤), Hao-Peng Song(宋豪鹏), Cun-Fa Gao(高存法). Chin. Phys. B, 2017, 26(12): 127307.
[12] Performance of thermoelectric generator with graphene nanofluid cooling
Jiao-jiao Xing(邢姣娇), Zi-hua Wu(吴子华), Hua-qing Xie(谢华清), Yuan-yuan Wang(王元元), Yi-huai Li(李奕怀), Jian-hui Mao(毛建辉). Chin. Phys. B, 2017, 26(10): 104401.
[13] Photoemission cross section: A critical parameter in the impurity photovoltaic effect
Jiren Yuan(袁吉仁), Haibin Huang(黄海宾), Xinhua Deng(邓新华), Zhihao Yue(岳之浩), Yuping He(何玉平), Naigen Zhou(周耐根), Lang Zhou(周浪). Chin. Phys. B, 2017, 26(1): 018503.
[14] Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays
Wang Wen-Juan (王文娟), Li Chong (李冲), Zhou Hong-Yi (周弘毅), Wu Hua (武华), Luan Xin-Xin (栾信信), Shi Lei (史磊), Guo Xia (郭霞). Chin. Phys. B, 2015, 24(2): 024209.
[15] β-FeSi2 as the bottom absorber of triple-junction thin-film solar cells:A numerical study
Yuan Ji-Ren (袁吉仁), Shen Hong-Lie (沈鸿烈), Zhou Lang (周浪), Huang Hai-Bin (黄海宾), Zhou Nai-Gen (周耐根), Deng Xin-Hua (邓新华), Yu Qi-Ming (余启名). Chin. Phys. B, 2014, 23(3): 038801.
No Suggested Reading articles found!