Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 084208    DOI: 10.1088/1674-1056/20/8/084208
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Optical parametric chirped pulse amplification based on photonic crystal fibre

Wang He-Lin(王河林)a), Yang Ai-Jun(杨爱军)a), Leng Yu-Xin(冷雨欣)b), Wang Cheng(王乘)b), Xu Zhi-Zhan(徐至展)b), and Hou Lan-Tian(候蓝田)c)
a College of Science, Zhejiang University of Technology, Hangzhou 310023, China; b State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; c Institute of Infrared Fibre and Sensor Technology, School of Information Technology and Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract  A compact two-stage optical parametric chirped pulse amplifier based on photonic crystal fibre is demonstrated. A 1064-nm soliton pulse is obtained in a home-made photonic crystal fibre (PCF) with femtosecond pulse pumping and then amplified to 2 mJ in an Nd:YAG regenerative amplifier. After the amplified pulses pass through the LBO crystal, the 532-nm double-frequency light with an energy of 0.8 mJ and a duration of over 100 ps at 10-Hz repetition rate is generated as a pump source in the following two-stage optical parametric amplification (OPA). The 850-nm chirped signal light gain from the stretcher is 1.5 × 104 in the first-stage OPA while it is 120 in the second-stage OPA. The total signal gain of optical parametric chirped pulse amplification (OPCPA) can reach 1.8 × 106.
Keywords:  ultra-fast laser      optical parametric amplification      photonic crystal fibre  
Received:  11 November 2010      Revised:  26 February 2011      Accepted manuscript online: 
PACS:  42.79.-e (Optical elements, devices, and systems)  
  42.55.Wd (Fiber lasers)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Wg (Other fiber-optical devices)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2006CB806001 and 2011CB808101), the National Natural Science Foundation of China (Grant Nos. 10734080, 60908008, and 60921004), the Fund of the State Key Laboratory of High Field Laser Physics and Shanghai Commission of Science and Technology, China (Grant Nos. 07JC14055 and 09QA1406500), and the Scientific Research Foundation of Zhejiang University of Technology, China (Grant No. 109004129).

Cite this article: 

Wang He-Lin(王河林)a), Yang Ai-Jun(杨爱军), Leng Yu-Xin(冷雨欣), Wang Cheng(王乘), Xu Zhi-Zhan(徐至展), and Hou Lan-Tian(候蓝田) Optical parametric chirped pulse amplification based on photonic crystal fibre 2011 Chin. Phys. B 20 084208

[1] Dubietis A, Jonusauskas G and Piskarskas A 1992 Opt. Commun. 88 437
[2] Ishii N, Turi L, Yakovlev V S, Fuji T, Krausz F, Baltuvska A, Butkus R, Veitas G, Smilgevivcius V, Danielius R and Piskarskas A 2005 Opt. Lett. 30 567
[3] Witte S, Zinkstok R Th, Wolf A L, Hogervorst W, Ubachs W and Eikema K S E 2006 Opt. Express 14 8168
[4] Yang X D, Xu Z Z, Leng Y X, Lu H H, Lin L H, Zhang Z Q and Li R X 2002 Opt. Lett. 27 1135
[5] Xu Z Z, Yang X D, Leng Y X, Lu H H, Lin L H, Zhang Z Q, Li R X, Zhang W Q, Yin D J, Jin S Q, Peng J H, Tang B and Zhao B Z 2003 Chin. Opt. Lett. 1 24
[6] Yoshida H, Ishii E, Kodama R, Fujita H, Kitagawa Y, Izawa Y and Yamanaka T 2003 Opt. Lett. 28 257
[7] Teisset C Y, Ishii N, Fuji T, Metzger T, K"ohler S, Holzwarth R and Baltuvska A 2005 Opt. Express 13 6550
[8] Yamakawa K, Aoyama M, Akahane Y, Ogawa K, Tsuji K and Sugiyama A 2007 Opt. Express 15 5018
[9] Wang H L, Wang C, Leng Y X, Xu Z Z and Hou L T 2010 Chin. Phys. B 19 054212
[10] Cardoso L, Pires H and Figueira G 2009 Opt. Lett. 34 1369
[11] Ogawa K, Sueda K, Akahane Y, Aoyama M, Tsuji K, Fujioka K, Kanabe T, Yamakawa K and Miyanaga N 2009 Opt. Express 17 7744
[12] Aguergaray C, Schmidt O, Rothhardt J, Schimpf D, Descamps D, Petit S, Limpert J and Cormier E 2009 Opt. Express 17 5153
[13] Tzeng Y W, Lin Y Y, Huang C H, Liu J M, Chui H C, Liu H L, Stone J M, Knight J C and Chu S W 2009 Opt. Express 17 7304
[14] Danielius R, Piskarskas A, Stabinis A, Banfi G P, Di Trapani P and Righini R 1993 J. Opt. Soc. Am. B 10 2222
[1] Linear and nonlinear optical response of g-C3N4-based quantum dots
Jing-Zhi Zhang(张竞之) and Hong Zhang(张红). Chin. Phys. B, 2021, 30(7): 077802.
[2] Insulator-metal transition in CaTiO3 quantum dots induced by ultrafast laser pulses
Tong Liu(刘彤), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2020, 29(5): 058101.
[3] Compact surface plasmon amplifier in nonlinear hybrid waveguide
Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁). Chin. Phys. B, 2016, 25(7): 077301.
[4] Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy
Wei Dang(党伟), Qing Liao(廖清), Peng-Cheng Mao(毛鹏程), Hong-Bing Fu(付红兵), Yu-Xiang Weng(翁羽翔). Chin. Phys. B, 2016, 25(5): 054207.
[5] Coherent effect of triple-resonant optical parametric amplification inside a cavity with injection of a squeezed vacuum field
Di Ke (邸克), Zhang Jing (张靖). Chin. Phys. B, 2013, 22(9): 094205.
[6] Temperature dependence of birefringence in olarization-maintaining photonic crystal fibres
Zhao Hong(赵红), Chen Meng(陈檬), and Li Gang(李港) . Chin. Phys. B, 2012, 21(6): 068404.
[7] Equilateral pentagon polarization maintaining photonic crystal fibre with low nonlinearity
Yang Han-Rui(杨汉瑞), Li Xu-You(李绪友), Hong Wei(洪伟), and Hao Jin-Hui(郝金会) . Chin. Phys. B, 2012, 21(2): 024211.
[8] High birefringence, low loss terahertz photonic crystal fibres with zero dispersion at 0.3 THz
Yin Guo-Bing(尹国冰), Li Shu-Guang(李曙光), Wang Xiao-Yan(王晓琰), and Liu Shuo(刘硕) . Chin. Phys. B, 2011, 20(9): 090701.
[9] Complete leaky mode coupling in dual-core photonic crystal fibre based on the coupled-mode theory
Yuan Jin-Hui(苑金辉), Yu Chong-Xiu(余重秀), Sang Xin-Zhu(桑新柱), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(6): 064101.
[10] Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Shen Xiang-Wei (申向伟), Zhang Jin-Long (张锦龙), Zhou Gui-Yao (周桂耀), Li Shu-Guang (李曙光), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2011, 20(5): 054210.
[11] Improved high birefringence photonic crystal fibres with dispersion flattened and single mode operation
Fu Bo(付博), Li Shu-Guang(李曙光), Yao Yan-Yan(姚艳艳), Zhang Lei(张磊), and Zhang Mei-Yan(张美艳). Chin. Phys. B, 2011, 20(2): 024209.
[12] Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres
Yuan Jin-Hui(苑金辉), Sang Xin-Zhu(桑新柱), Yu Chong-Xiu(余重秀), Xin Xiang-Jun(忻向军), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(2): 024213.
[13] Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography
Yin Jun(尹君), Yu Ling-Yao(于凌尧), Liu Xing(刘星), Wan Hui(万辉), Lin Zi-Yang(林子扬), and Niu Han-Ben(牛憨笨). Chin. Phys. B, 2011, 20(1): 014206.
[14] A novel method of rapidly modeling optical properties of actual photonic crystal fibres
Wang Li-Wen(王立文), Lou Shu-Qin(娄淑琴), Chen Wei-Guo(陈卫国), and Li Hong-Lei(李宏雷). Chin. Phys. B, 2010, 19(8): 084209.
[15] Polarisation-sensitive four-wave mixing and soliton self-frequency shift effect in the highly birefringent photonic crystal fibre
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Li Shu-Guang (李曙光), Zhou Gui-Yao (周桂耀), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2010, 19(7): 074218.
No Suggested Reading articles found!