CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Broadband water window supercontinuum generation with a ω+3ω/2 multicycle two-colour pulse |
Du Hong-Chuan(杜洪川), Wang Xiao-Shan(王小山), and Hu Bi-Tao(胡碧涛)† |
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract We propose a method to generate a high-efficiency broadband water window supercontinuum with a ω+3ω/2 multicycle two-colour pulse. Our results reveal that the 3ω/2 laser pulse can simultaneously modulate the acceleration step and the ionization step, which not only broadens the bandwidth but also enhances the yield of the generated supercontinuum. An ultra-broadband supercontinuum from 290 eV to 555 eV covering the whole water window is generated. Using this method, we expect that an isolated 62-as pulse with a minor pre-pulse can be directly obtained.
|
Received: 13 December 2010
Revised: 11 April 2011
Accepted manuscript online:
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the Program for New Century Excellent Talents in University of China, the National Natural Science
Foundation of China (Grant Nos. 10775062 and 10875054), and the Fundamental Research Funds for the Central Universities of
China (Grant No. lzujbky-2010-k08). |
Cite this article:
Du Hong-Chuan(杜洪川), Wang Xiao-Shan(王小山), and Hu Bi-Tao(胡碧涛) Broadband water window supercontinuum generation with a ω+3ω/2 multicycle two-colour pulse 2011 Chin. Phys. B 20 084206
|
[1] |
Corkum P B and Krausz F 2007 Nature Phys. 3 381
|
[2] |
Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G and Agostini P 2001 Science 292 1689
|
[3] |
Uiberacker M, Uphues Th, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schr"oder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2007 Nature 446 627
|
[4] |
Gilbertson S, Khan S D, Wu Y, Chini M and Chang Z 2010 Phys. Rev. Lett. 105 093902
|
[5] |
Takahashi E J, Lan P, Mücke O D, Nabekawa Y and Midorikawa K 2010 Phys. Rev. Lett. 104 233901
|
[6] |
Christov I P, Murnane M M and Kapteyn H C 1997 Phys. Rev. Lett. 78 1251
|
[7] |
Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
|
[8] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
[9] |
Hong W, Lu P, Li Q and Zhang Q 2009 Opt. Lett. 34 2102
|
[10] |
Du H, Wang H and Hu B 2010 Phys. Rev. A 81 063813
|
[11] |
Wu J, Zhai Z and Liu X 2010 Chin. Phys. B 19 093201
|
[12] |
Ye X, Zhou X, Zhao S and Li P 2009 Acta Phys. Sin. 58 1579 (in Chinese)
|
[13] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[14] |
Tate J, Auguste T, Muller H, Sali`eres P, Agostini P and DiMauro L F 2007 Phys. Rev. Lett. 98 013901
|
[15] |
Takahashi E J, Kanai T, Ishikawa K, Nabekawa Y and Midorikawa K 2008 Phys. Rev. Lett. 101 253901
|
[16] |
Doumy G, Wheeler J, Roedig C, Chirla R, Agostini P and DiMauro L F 2009 Phys. Rev. Lett. 102 093002
|
[17] |
Pfeifer T, Gallmann L, Abel M J, Nagel P M, Neumark D M and Leone S R 2006 Phys. Rev. Lett. 97 163901
|
[18] |
Lan P, Lu P, Cao W, Li Y and Wang X 2007 Phys. Rev. A 76 011402(R)
|
[19] |
Zhang Q, Lu P, Lan P, Hong W and Yang Z 2008 Opt. Express 16 9795
|
[20] |
Zou P, Zeng Z, Zheng Y, Lu Y, Liu P, Li R and Xu Z 2010 Phys. Rev. A 81 033428
|
[21] |
Chang Z 2004 Phys. Rev. A 70 043802
|
[22] |
Du H and Hu B 2010 Opt. Express 18 25958
|
[23] |
Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191
|
[24] |
Javanainen J, Eberly J H and Su Q 1988 Phys. Rev. A 38 3430
|
[25] |
Watanabe N and Tsukada M 2000 Phys. Rev. E 62 2914
|
[26] |
Antoine P, Piraux B and Maquet A 1995 Phys. Rev. A 51 R1750
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|