Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 078102    DOI: 10.1088/1674-1056/20/7/078102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Real-time observation of template-assisted colloidal aggregation and colloidal dispersion under an alternating electric field

Li Chao-Rong(李超荣), Li Shu-Wen(李书文), Mei Jie(梅洁), Xu Qing(徐庆), Zheng Ying-Ying(郑莹莹), and Dong Wen-Jun(董文钧)
Department of Physics, Center for Optoelectronics Materials and Devices, and Key Laboratory of Advanced Textile Materials & Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  A fascinating colloid phenomenon was observed in a specially designed template-assisted cell under an alternating electrical field. Most colloidal particles experienced the processes of aggregation, dispersion and climbing up to the plateaus of the patterns pre-lithographed on the indium tin oxide glass as the frequency of the alternating electrical field increased. Two critical frequencies fcrit1 ≈ 15 kHz and fcrit2 ≈ 40 kHz, corresponding to the transitions of the colloid behaviour were observed. When f < 15 kHz, the particles were forced to aggregate along the grooves of the negative photoresist patterned template. When 15 kHz < f < 40 kHz, the particle clusters became unstable and most particles started to disperse and were blocked by the fringes of the negative photoresist patterns. As the frequency increased to above 40 kHz, the majority of particles started to climb up to the plateaus of the patterns. Furthermore, the dynamics analysis for the behaviour of the colloids was given and we found out that positive or negative dielectrophoresis force, electrohydrodynamic force, particle—particle interactions and Brownian motion change with the frequency of the alternating electric field. Thus, changes of the related forces affect or control the behaviour of the colloids.
Keywords:  template-assisted      aggregation      dispersion      dynamics analysis  
Received:  21 January 2011      Revised:  09 March 2011      Accepted manuscript online: 
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  82.70.-y (Disperse systems; complex fluids)  
  82.70.Dd (Colloids)  
  82.70.Kj (Emulsions and suspensions)  

Cite this article: 

Li Chao-Rong(李超荣), Li Shu-Wen(李书文), Mei Jie(梅洁), Xu Qing(徐庆), Zheng Ying-Ying(郑莹莹), and Dong Wen-Jun(董文钧) Real-time observation of template-assisted colloidal aggregation and colloidal dispersion under an alternating electric field 2011 Chin. Phys. B 20 078102

[1] Arora A K and Tata B V R 1996 Ordering and Phase Transitions in Charged Colloids (New York: VCH publisher Inc.) p. 1
[2] Zhang K Q and Liu X Y 2004 Nature 429 739
[3] Zhang K Q and Liu X Y 2006 Phys. Rev. Lett. 96 105701
[4] Xie R G and Liu X Y 2009 J. Am. Chem. Soc. 131 4976
[5] Feng T H, Dai Q F, Wu L J, Guo Q, Hu W and Lan S 2008 Chin. Phys. B 17 4533
[6] Denkov N D, Velev O D, Kralchevsky P A, Ivanov I B, Yoshimura H and Nagayama K 1992 Langmuir 8 3183
[7] Erb R M, Son1 H S, Samanta B, Rotello V M and Yellen B B 2009 Nature 457 999
[8] Williams S J, Kumar A and Wereley S T 2009 Phys. Fluids 21 091104
[9] Yan H T, Wang M, Ge Y X and Yu P 2009 Chin. Phys. B 18 2389
[10] Zhang L F and Huang J P 2010 Chin. Phys. B 19 024213
[11] Zhang T H and Liu X Y 2009 Angew. Chem. Int. Ed. 48 1308
[12] Zhang T H and Liu X Y 2007 J. Phys. Chem. C 111 1342
[13] Zhang T H and Liu X Y 2006 Appl. Phys. Lett. 89 261914
[14] Liu Y, Narayanan J and Liu X Y 2006 J. Chem. Phys. 124 124906
[15] Nadal F, Argoul F, Kestener P, Pouligny B, Ybert C and Ajdari A 2002 Eur. Phys. J. E 9 387
[16] Nadal F, Argoul F, Hanusse P, Pouligny B and Ajdari A 2002 Phys. Rev. E 65 061409
[17] Allard M, Sargent E H, Lewis P C and Kumacheva E 2004 Adv. Mater. 16 15
[18] Yeh S R, Seul M and Shraiman B I 1997 Nature 386 57
[19] Kaler K, Xie J P, Jones T B and Paul R 1992 Biophys. J. bf 63 58
[20] Ramos A, Morgan H, Green N G and Castellanos A 1999 J. Colloid Interface Sci. 217 420
[21] Green N G and Morgan H 1998 J. Phys. D: Appl. Phys. 31 L25
[22] Green N G, Ramos A and Morgan H 2000 J. Phys. D: Appl. Phys. 33 632
[23] Li J F, Yu W H, Chen C S and Wei W C 2003 Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, San Francisco, Febuary 2, 2003 p. 566
[24] Pohl H A 1951 J. Appl. Phys. 22 869
[25] Jones T B 1995 Electromechanics of Particles (New York: Cambridge University Press) pp. 5—82
[26] Green N G and Morgan H 1997 J. Phys. D: Appl. Phys. 30 L41
[27] Russel W B, Saville D A and Schowalter W R 1989 Colloidal Dispersions (New York: Cambridge University Press) pp. 1—454
[28] Trau M, Saville D A and Aksay I A 1997 Langmuir 13 6375
[29] Ristenpart W D, Aksay I A and Saville D A 2004 Phys. Rev. E 69 021405
[30] Ristenpart W D, Aksay I A and Saville D A 2007 J. Fluid Mech. 575 83
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[3] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[4] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[5] Tunable inhibition of β-amyloid peptides by fast green molecules
Tiantian Yang(杨甜甜), Tianxiang Yu(俞天翔), Wenhui Zhao(赵文辉), and Dongdong Lin(林冬冬). Chin. Phys. B, 2021, 30(8): 088701.
[6] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[7] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[8] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[9] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[10] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[11] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[12] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[13] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[14] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[15] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
No Suggested Reading articles found!