Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 077102    DOI: 10.1088/1674-1056/20/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic, and magnetic properties of CrN under high pressure

Lin He(蔺何)a)b)c) and Zeng Zhi(曾雉) a)†
a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, Chinab Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Chinac Graduate University of the Chinese Academy of Sciences, Beijing 100094, China
Abstract  The structural, electronic and magnetic properties of CrN under high pressure are investigated by first-principles calculations. The antiferromagnetic orthorhombic structure is identified to be the preferred ground state structure. It possesses a bulk modulus of 252.8 GPa and the nonzero magnetic moment of 2.33 μB per Cr ion, which agree well with the experimental results. CrN undergoes structural and magnetic transitions from an antiferromagnetic rocksalt structure to a non-magnetic Pnma phase at 132 GPa. Under compression, the magnetic moment of the Cr ion reduces rapidly near the equilibrium and phase transition point, and the distribution of the density of states is broadened, but the form of overlap between the orbitals of Cr d and N p remains unchanged. The broadening of the band induces spin flipping, which consequently results in the smaller magnetic moment of the Cr ion.
Keywords:  CrN      pressure      electronic property      magnetic property  
Received:  24 September 2010      Revised:  03 February 2011      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  

Cite this article: 

Lin He(蔺何) and Zeng Zhi(曾雉) Structural, electronic, and magnetic properties of CrN under high pressure 2011 Chin. Phys. B 20 077102

[1] Neckel A 1983 Int. J. Quantum Chem. 23 1317
[2] Wiklund U, Bromark M, Larsson M, Hedenqvist P and Hogmark S 1997 Surf. Coat. Technol. 91 57
[3] Nouveau C, Djouadi M A, Banakh O, Sanjin'es R and L'evy F 2001 Thin Solid Films 398 490
[4] Rivadulla F, Ba nobre-lópez M, Quintela C X, Pineiro A, Pardo V, Baldomir D, López-Quintela M A, Rivas J, Ramos C A, Salva H, Zhou J S and Goodenough J B 2009 Nature Materials 8 947
[5] Papaconstantopoulos D A, Pickett W E, Klein B M and Boyer L L 1985 Phys. Rev. B 31 752
[6] Miao M S and Lambrecht W R L 2005 Phys. Rev. B 71 214405
[7] Lambrecht W R L, Miao M S and Lukashev P 2005 J. Appl. Phys. 97 10D306
[8] Lambrecht W R L, Prikhodko M and Miao M S 2003 Phys. Rev. B 68 174411
[9] Houari A, Matar S F, Belkhir M A and Nakhl M 2007 Phys. Rev. B 75 064420
[10] Guan P F, Wang C Y and Yu T 2008 Chin. Phys. B 17 3040
[11] Zhao B R, Chen L, Luo H L, Jack M D and Mullin D P 1984 Phys. Rev. B 29 6198
[12] Leineweber A, Niewa R, Jacobs H and Kockelmann W 2000 J. Mater. Chem. 10 2827
[13] Corliss L M, Elliott N and Hastings J M 1960 Phys. Rev. 117 929
[14] Filippetti A, Pickett W E and Klein B M 1998 Phys. Rev. B 59 7043
[15] Filippetti A and Hill N A 2000 Phys. Rev. lett. 85 5166
[16] Herwadkar A and Lambrecht W R L 2009 Phys. Rev. B 79 035125
[17] Tsuchiya Y, Kosuge K, Ikeda Y, Shigematsu T, Yamaguchi S and Nakayama N 1996 Mater. Trans. 37 121
[18] Herle P S, Hedge M S, Vasathacharya N Y, Philip S, Rao M V R and Sripathi T 1997 J. Solid State Chem. 134 120
[19] Gall D, Shin C S, Haasch R T, Petrov I and Greene J E 2002 J. Appl. Phys. 91 5882
[20] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[21] Blöchl P E 1994 Phys. Rev. B 50 17953
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[23] Tsuchiya T and Kawamura K 2001 J. Chem. Phys. 114 10086
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[3] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[4] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[7] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
[8] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[9] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[10] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Li(2p $\leftarrow$ 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua. Chin. Phys. B, 2022, 31(7): 073401.
[15] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
No Suggested Reading articles found!