|
|
Entanglement dynamics of a moving multi-photon Jaynes–Cummings model in mixed states |
Tan Lei(谭磊)a)b)†, Zhang Yu-Qing(张玉青)a), and Zhu Zhong-Hua(朱中华)b) |
a Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China; b Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract Using the algebraic dynamical method, the entanglement dynamics of an atom-field bipartite system in a mixed state is investigated. The atomic center-of-mass motion and the field-mode structure are also included in this system. We find that the values of the detuning and the average photon number are larger, the amplitude of the entanglement is smaller, but its period does not increase accordingly. Moreover, with the increase of the field-mode structure parameter and the transition photon number, the amplitude of the entanglement varies slightly while the oscillation becomes more and more fast. Interestingly, a damping evolution of the entanglement appears when both the detuning and the atomic motion are considered simultaneously.
|
Received: 31 October 2010
Revised: 21 March 2011
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10704031) and the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2010-75). |
Cite this article:
Tan Lei(谭磊), Zhang Yu-Qing(张玉青), and Zhu Zhong-Hua(朱中华) Entanglement dynamics of a moving multi-photon Jaynes–Cummings model in mixed states 2011 Chin. Phys. B 20 070303
|
[1] |
Vaglica A and Vetri G 2007 Phys. Rev. A 75 062120
|
[2] |
Wang Z J, Zhang K and Fan C Y 2010 Chin. Phys. B 19 110311
|
[3] |
Ficek Z and Tanas R 2006 Phys. Rev. A 74 024304
|
[4] |
Zhao L F, Lai B H, Mei F, Yu Y F, Feng X L and Zhang Z M 2010 Chin. Phys. B 19 094207
|
[5] |
Zhang D Y, Tang S Q, Xie L J, Zhan X G, Chen Y H and Gao F 2010 Chin. Phys. B 19 100313
|
[6] |
Vitali D, Gigan S, Ferreira A, Bohm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
|
[7] |
Zhang Q and Zhang E Y 2002 Acta Phys. Sin. 51 1684
|
[8] |
Ye L and Guo G C 2002 Chin. Phys. 11 996
|
[9] |
Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[10] |
Metwally N, Abdelaty M and Obada A S F 2004 Chaos, Solitons and Fractals 22 529
|
[11] |
Wang X W, Liu X and Fang M F 2007 Chin. Phys. 16 1215
|
[12] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[13] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[14] |
Yang M, Song W and Cao Z L 2005 Phys. Rev. A 71 034312
|
[15] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[16] |
Bennett C H, Shor P W, Smolin J A and Thapliyal A V 1999 Phys. Rev. Lett. 83 3081
|
[17] |
Chen L B, Jin R B and Lu H 2009 Chin. Phys. B 18 30
|
[18] |
Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[19] |
Bennett C H, Divincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
|
[20] |
Popescu S and Rohrlich D 1997 Phys. Rev. A 56 3319(R)
|
[21] |
Peres A 1996 Phys. Rev. Lett. 77 1413
|
[22] |
Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
|
[23] |
Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
|
[24] |
Vidal G 2000 J. Mod. Opt. 47 355
|
[25] |
Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
|
[26] |
Zhou L, Song H S and Li C 2002 J. Opt. B 4 425
|
[27] |
Obada A S F, Hessian H A and Mohamed A B A 2007 Opt. Commun. 280 230
|
[28] |
Akhtarshenas S J and Farsi M 2007 Phys. Scr. 75 608
|
[29] |
Zhang J S and Xu J B 2009 Opt. Commun. 282 2543
|
[30] |
Xu H S and Xu J B 2009 Chin. Phys. Lett. 26 010301
|
[31] |
Zhang J S and Xu J B 2009 Chin. Phys. B 18 2288
|
[32] |
Yonddotac M, Yu T and Eberly J H 2007 J. Phys. B 40 S45
|
[33] |
Dur W and Briegel H J 2007 Rep. Prog. Phys. 70 1381
|
[34] |
Wang S J, Li F L and Weiguny A 1993 Phys. Lett. A 180 189
|
[35] |
Jie Q L, Wang S J and Wei L F 1997 J. Phys. A 30 6147
|
[36] |
Schlicher R R 1989 Opt. Commun. 70 97
|
[37] |
Verstraete F and Verschelde H 2003 Phys. Rev. Lett. 90 097901
|
[38] |
Yoddotnac M, Yu T and Eberly J H 2006 J. Phys. B 39 S621
|
[39] |
Yan X Q 2009 Chaos, Solitons and Fractals 41 1645
|
[40] |
Schlosshauer M, Hines A P and Milburn G J 2008 Phys. Rev. A 77 022111
|
[41] |
Cummings N I and Hu B L 2008 Phys. Rev. A 77 053823
|
[42] |
Zidan N A, Abdel-Aty M and Obada A S F 2002 Chaos, Solitons and Fractals 13 1421
|
[43] |
Tumminello M, Vaglica A and Vetri G 2004 Euro. Phys. Lett. 65 785
|
[44] |
Vaglica A and Vetri G 2007 Phys. Rev. A 75 062120
|
[45] |
Yan X Q, Shao B and Zou J 2008 Chaos, Solitons and Fractals 37 835
|
[46] |
Abdel Aty M, Furuichi S and Obada A S F 2002 J. Opt. B 4 37
|
[47] |
Joshi A 2010 Opt. Commun. 283 2166
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|