Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 068101    DOI: 10.1088/1674-1056/20/6/068101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Adsorption of sodium ions and hydrated sodium ions on a hydrophobic graphite surface via cation-$\pi$ interactions

Shi Guo-Sheng(石国升)a), Wang Zhi-Gang(王志刚) a)†, Zhao Ji-Jun(赵纪军)b), Hu Jun(胡钧)a), and Fang Hai-Ping(方海平) a)‡
a Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; b Laboratory of Material Modification by Laser, Electron and Ion Beams, and the College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China
Abstract  Using density functional theory computation, we show that sodium ions and hydrated sodium ions can be strongly adsorbed onto a hydrophobic graphite surface via cation-$\pi$ interactions. The key to this cation-π interaction is the coupling of the delocalized $\pi$ states of graphite and the empty orbitals of sodium ions. This finding implies that the property of the graphite surface is extremely dependent on the existence of the ions on the surface, suggesting that the hydrophobic property of the graphite surface may be affected by the existence of the sodium ions.
Keywords:  graphite      sodium ion and hydrated sodium ion      cation-$\pi$ interaction      density functional theory  
Received:  24 August 2010      Revised:  13 October 2010      Accepted manuscript online: 
PACS:  81.05.uf (Graphite)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674146 and 10825520), the National Basic Research Program of China (Grant No. 2007CB936000), and the Knowledge Innovation Program of the Chinese Academy of Sciences.

Cite this article: 

Shi Guo-Sheng(石国升), Wang Zhi-Gang(王志刚), Zhao Ji-Jun(赵纪军), Hu Jun(胡钧), and Fang Hai-Ping(方海平) Adsorption of sodium ions and hydrated sodium ions on a hydrophobic graphite surface via cation-$\pi$ interactions 2011 Chin. Phys. B 20 068101

[1] Peng Q, Chen G, Mizuseki H and Kawazoe Y 2009 J. Chem. Phys. 131 214505
[2] Thiel P A and Madey T E 1987 Surf. Sci. Rep. 7 211
[3] Henderson M A 2002 Surf. Sci. Rep. 46 1
[4] Kasemo B 2002 Surf. Sci. 500 656
[5] Ghosh S, Sood A K and Kumar N 2003 Science 299 1042
[6] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E and Dai H 2008 Nature Nanotech. 3 538
[7] Wang H, Robinson J T, Diankov G and Dai H 2008 J. Am. Chem. Soc. 132 3270
[8] Park S, An J, Piner R D, Jung I, Yang D, Velamakanni A, Nguyen S T and Ruoff R S 2008 Chem. Mater. 20 6592
[9] Kumpf R A and Dougherty D A 1993 Science 261 1708
[10] Ma J C and Dougherty D A 1997 Chem. Rev. 97 1303
[11] Bayley H and Cremer P S 2001 Nature 413 226
[12] Meng S, Chakarov D V, Kasemo B and Gao S 2004 J. Chem. Phys. 121 12572
[13] Meng S and Gao S 2006 J. Chem. Phys. 125 014708
[14] Lin C S, Zhang R Q, Lee S T, Elstner M, Frauenheim T and Wan L J 2005 J. Phys. Chem. B 109 14183
[15] Jalkanen J P, Halonen M, Fernández-Torre D, Laasonen K and Halonen L 2007 J. Phys. Chem. A 111 12317
[16] Higai S, Honda A, Nishida K, Wada N and Sakabe Y 2008 J. Phys. Chem. Solids 69 1158
[17] Xu S, Irle S, Musaev D G and Lin M C 2006 J. Phys. Chem. B 110 21135
[18] Kruchten F and Knorr K 2003 Phys. Rev. Lett. 91 085502
[19] Clemmer C R and Beebe T P 1991 Science 251 640
[20] Manohar S, Mantz A R, Bancroft K E, Hui C Y, Jagota A and Vezenov D V 2008 Nano Lett. 8 4365
[21] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[22] Chakarov D V, österlund L and Kasemo B 1995 Langmuir 11 1201
[23] Gleeson M A, Maartensson K, Kasemo B and Chakarov D V 2004 Appl. Surf. Sci. 235 91
[24] Meng S, Xu L F, Wang E G and Gao S 2002 Phys. Rev. Lett. 89 176104
[25] Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson L G M and Nilsson A 2002 Phys. Rev. Lett. 89 276102
[26] Menzel D 2002 Science 295 58
[27] Feibelman P J 2002 Science 295 99
[28] Michaelides A, Alavi A and King D A 2003 J. Am. Chem. Soc. 125 2746
[29] Clay C, Haq S and Hodgson A 2004 Phys. Rev. Lett. 92 046102
[30] Dulub O, Meyer B and Diebold U 2005 Phys. Rev. Lett. 95 136101
[31] Mann D J and Halls M D 2003 Phys. Rev. Lett. 90 195503
[32] Cicero G, Grossman J C, Schwegler E, Gygi F and Galli G 2008 J. Am. Chem. Soc. 130 1871
[33] Ni M Y, Wang X L and Zeng Z 2009 Chin. Phys. B 18 357
[34] Liu X Y, Wang C Y, Tang Y J, Sun W G and Wu W D 2010 Chin. Phys. B 19 036103
[35] Wei S Y, Wang J G and Ma L 2004 Chin. Phys. 13 85
[36] Zhu X Y and Huang Y 2005 Chin. Phys. 14 2083
[37] Ying M J, Zhang P and Du X L 2009 Chin. Phys. B 18 275
[38] Caragiu M and Finberg S 2005 J. Phys.: Condens. Matter 17 995
[39] Chan K T, Neaton J B and Cohen M L 2008 Phys. Rev. B 77 235430
[40] Becke A D 1988 Phys. Rev. A 38 3098
[41] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[42] Ditchfield R, Hehre W J and Pople J A 1971 J. Chem. Phys. 54 724
[43] Peng C, Ayala P Y, Schlegel H B and Frisch M J 1996 J. Comput. Chem. 17 49
[44] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2004 GAUSSIAN 03 (Revision D.01: Gaussian Inc.)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!