Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 068102    DOI: 10.1088/1674-1056/20/6/068102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thickness optimization of Mo films for Cu(InGa)Se2 solar cell applications

Li Wei (李微)ab, Zhao Yan-Min (赵彦民)aLiu Xing-Jiang (刘兴江)aAo Jian-Ping (敖建平)c, Sun Yun (孙云)c
a National Key Laboratory of Power Sources, Tianjin Institute of Power Sources, Tianjin 300381, China; b School of Material Science and Engineering, Tianjin University, Tianjin 300071, China; c Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China
Abstract  Mo thin films are deposited on soda lime glass (SLG) substrates using DC magnetron sputtering. The Mo film thicknesses are varied from 0.08 μm to 1.5 μm to gain a better understanding of the growth process of the film. The residual stresses and the structural properties of these films are investigated, with attention paid particularly to the film thickness dependence of these properties. Residual stress decreases and yields a typical tensile-to-compressive stress transition with the increase of film thickness at the first stages of film growth. The stress tends to be stable with the further increase of film thickness. Using the Mo film with an optimum thickness of 1 μm as the back contact, the Cu(InGa)Se2 solar cell can reach a conversion efficiency of 13.15%.
Keywords:  Mo film      Cu(InGa)Se2      back contact  
Received:  26 October 2010      Revised:  09 December 2010      Accepted manuscript online: 
PACS:  81.15.Cd (Deposition by sputtering)  
  61.10.Nz  
  81.15.Ef  

Cite this article: 

Li Wei (李微), Zhao Yan-Min (赵彦民), Liu Xing-Jiang (刘兴江), Ao Jian-Ping (敖建平), Sun Yun (孙云) Thickness optimization of Mo films for Cu(InGa)Se2 solar cell applications 2011 Chin. Phys. B 20 068102

[1] Ramanathan K and Miguel A C 2003 Photovoltaics Res. Appl. 11 225
[2] Ward J S, Ramanathan K, Hasoon F S, Coutts T J, Keane J, Contreras M A, Moriarty T and Noufi R 2002 Photovoltaics Res. Appl. 10 41
[3] Granath K, Rockett A, Bodegard M, Nender C and Stolt L 1995 13th European Photovoltaic Solar Energy Conference, October 23-27 Nice, France, p. 1983
[4] Gordillo G, Grizalez M and Hernandez L C 1998 Solar Energy Materials and Solar Cells 51 327
[5] Li W, Ao J P, He Q, Liu F F, Li F Y, Li C J and Sun Y 2007 Acta Phys. Sin. 56 5009 (in Chinese)
[6] Hudson C and Somekh R E 1996 J. Vac. Sci. Technol. A 14 2169
[7] Kamminga J D, Keijser T H, Delhez R and Mittemeijer E J 1998 Thin Solid Films 317 169
[8] Kohara N, Negami T, Nishitani M and Wada T 1995 Jpn. J. Appl. Phys. 34 L1141
[9] Wada T, Kohara N, Nishiwaki S and Negami T 2001 Thin Solid Films 387 118
[10] Zhang L, He Q, Xu C M, Xue Y M, Li C J and Sun Y 2008 Chin. Phys. B 17 3138
[11] Xu C M, Sun Y, Li F Y, Zhang L, Xue Y M, He Q and Liu H T 2007 Chin. Phys. 16 788
[12] Sarioglu C, Demirler U, Kursat K M and Urgen M 2005 Surface & Coatings Technology 190 238
[13] Vink T J, Somers M A J, Daams J L C and Dirks A G 1991 J. Appl. Phys. 70 4301
[14] Dietrich E W, Robert B G and Tang L H 1985 Surf. Sci. 162 114
[15] Hofman D W and Gaerttner M R 1980 J. Vac. Sci. Technol. 17 425
[16] Lee H W, Lau S P, Wang Y G, Tay B K and Hng H H 2004 Thin Solid Films 458 15
[17] Sakaguchi K, Iwasa S and Yoshino Y 1998 Vacuum 51 677
[18] Chang J F, Shen C C and Hon M H 2003 Ceramics International 29 245
[19] Chen G F, Yan W B, Chen H J, Cui H Y and Li Y X 2009 Chin. Phys. B 18 2988
[20] Chen G F, Yan W B, Chen H J, Li X H and Li Y X 2009 Chin. Phys. B 18 293
[21] Rockett A, Britt J S, Gillespie T, Marshall C, Al Jassim M M, Hasoon F, Matson R and Basol B 2000 Thin Solid Films 372 212
[22] Bodeg M, Granath K and Stolt L 2000 Thin Solid Films 361-362 9
[23] Lyahovitskaya V, Feldman Y, Gartsman K, Cohen H, Cytermann C and Cahen D 2002 J. Appl. Phys. 91 4205
[24] Schroeder D J and Rockett A A 1997 J. Appl. Phys. 82 4982
[25] Schuler S, Siebentritt S, Nishiwaki S, Rega N, Beckmann J, Brehme S and Lux-Steiner M C 2004 Phys. Rev. B 69 045210
[1] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[2] The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells
Jianhui Bao(包建辉), Ke Tao(陶科), Yiren Lin(林苡任), Rui Jia(贾锐), Aimin Liu(刘爱民). Chin. Phys. B, 2019, 28(9): 098201.
[3] Analysis of the interdigitated back contact solar cells: The n-type substrate lifetime and wafer thickness
Zhang Wei (张巍), Chen Chen (陈晨), Jia Rui (贾锐), Sun Yun (孙昀), Xing Zhao (邢钊), Jin Zhi (金智), Liu Xin-Yu (刘新宇), Liu Xiao-Wen (刘晓文). Chin. Phys. B, 2015, 24(10): 108801.
[4] Deep level transient spectroscopy investigation of deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact
Wang Zhao(王钊), Li Bing(黎兵), Zheng Xu(郑旭), Xie Jing(谢婧), Huang Zheng(黄征), Liu Cai(刘才), Feng Liang-Huan(冯良桓), and Zheng Jia-Gui(郑家贵). Chin. Phys. B, 2010, 19(2): 027303.
No Suggested Reading articles found!