Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067901    DOI: 10.1088/1674-1056/20/6/067901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Splitting the surface wave in metal/dielectric nanostructures

Zhu Song(祝颂), Wu Jian(吴坚)
Department of Physics, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  We investigate a modified surface wave splitter with a double-layer structure, which consists of symmetrical metallic grating and an asymmetrical dielectric, using the finite-difference time-domain (FDTD) simulation method. The metal/dielectric interface structure at this two-side aperture can support bound waves of different wavelengths, thus guiding waves in opposite directions. The covered dielectric films play an important role in the enhancement and confinement of the diffraction wave by the waveguide modes. The simulation result shows that the optical intensities of the guided surface wave at wavelengths of 760-nm and 1000-nm are about 100 times and 4~5 times those of the weaker side, respectively, which means that the surface wave is split by the proposed device.
Keywords:  surface plasmons      finite-difference time-domain method      metallic grating      layered nanostructures  
Received:  03 September 2010      Revised:  17 November 2010      Accepted manuscript online: 
PACS:  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  91.30.Fn (Surface waves and free oscillations)  
  02.60.Cb (Numerical simulation; solution of equations)  

Cite this article: 

Zhu Song(祝颂), Wu Jian(吴坚) Splitting the surface wave in metal/dielectric nanostructures 2011 Chin. Phys. B 20 067901

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Zhang Y, Zhao Q, Liao Z M and Yu D P 2009 Chin. Phys. B 18 4865
[3] Gong Z Q and Liu J Q 2010 Chin. Phys. B 19 067303
[4] Hua Y L, Xin F J, Yan L J, Yuan L Z and Fang Y H 2010 Chin. Phys. B 19 047309
[5] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J and Ebbesen T W 2002 Science 297 820
[6] Garcia-Vidal F J, Martin-Moreno L, Lezec H J and Ebbesen T W 2003 Appl. Phys. Lett. 83 4500
[7] Shi H, Du C and Luo X 2007 Appl. Phys. Lett. 91 093111
[8] Wang C, Du C, Lü Y and Luo X 2006 Opt. Express 14 5671
[9] Zhang Y L, Yin Z D, Hong Z C and Ya J X 2008 Chin. Phys. Lett. 25 168
[10] Zhang Y, Zhao D, Zhou C and Jiang X 2009 J. Appl. Phys. 105 113124
[11] Zheng G G and Li X Y 2009 J. Opt. A: Pure Appl. Opt. 11 075002
[12] Zheng G G, Shi L X, Wang H L and Li X Y 2009 Opt. Comm. 282 4146
[13] Mart'hin-Moreno L, García-Vidal F J, Lezec H J, Degiron A and Ebbesen T W 2003 Phys. Rev. Lett. 90 167401
[14] Gan Q, Guo B, Song G, Chen L, Fu Z, Ding Y J and Bartoli F J 2007 Appl. Phys. Lett. 90 161130
[15] Caglayan H and Ozbay E 2008 Opt. Express 16 19091
[16] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[17] Sambles J R, Bradbery G W and Yang F 1991 Contemporary Physics 32 173
[18] Ritchie R H, Arakawa E T, Cowan J J and Hamm R N 1968 Phys. Rev. Lett. 21 1530
[19] Moreland J, Adams A and Hansma P K 1982 Phys. Rev. B 25 2297
[20] Worthing P T and Barnes W L 2001 Appl. Phys. Lett. 79 3035
[21] García-Vidal F J, Lezec H J, Ebbesen T W and Mart'hin-Moreno L 2003 Phys. Rev. Lett. 90 213901
[22] Yu L B, Lin D Z, Chen Y C, Chang Y C, Huang K T, Liaw J W, Yeh J T, Liu J M, Yeh C S and Lee C K 2005 Phys. Rev. B 71 041405
[23] Garcia-Vidal F J, Martin-Moreno L and Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97
[24] Li Z B, Tian J G, Liu Z B, Zhou W Y and Zhang C P 2005 Opt. Express 13 9071
[25] Nikitin A Y, Garcia-Vidal F J and Martin-Moreno L 2009 J. Opt. A: Pure Appl. Opt. 11 125702
[1] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[2] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[3] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[4] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[5] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[6] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[7] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[8] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[9] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[10] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[11] Fabry-Pérot resonance coupling associated exceptional points in a composite grating structure
Zhi-Sen Jiang(蒋之森), De-Jiao Hu(胡德娇), Lin Pang(庞霖), Fu-Hua Gao(高福华), Ping Wang(王平). Chin. Phys. B, 2018, 27(5): 054201.
[12] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[13] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[14] Diffraction properties of binary graphene sheet arrays
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国). Chin. Phys. B, 2017, 26(1): 017302.
[15] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
No Suggested Reading articles found!