Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 057305    DOI: 10.1088/1674-1056/20/5/057305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Different temperature dependence of carrier transport properties between AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures

Song Jie (宋杰), Xu Fu-Jun (许福军), Huang Cheng-Cheng (黄呈橙), Lin Fang (林芳), Wang Xin-Qiang (王新强), Yang Zhi-Jian (杨志坚), Shen Bo (沈波)
State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics,Peking University, Beijing 100871, China
Abstract  The temperature dependence of carrier transport properties of AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures has been investigated. It is shown that the Hall mobility in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures is higher than that in Al0.25Ga0.75N/GaN heterostructures at temperatures above 500 K, even the mobility in the former is much lower than that in the latter at 300 K. More importantly, the electron sheet density in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures decreases slightly, whereas the electron sheet density in Al0.25Ga0.75N/GaN heterostructures gradually increases with increasing temperature above 500 K. It is believed that an electron depletion layer is formed due to the negative polarization charges at the InyGa1-yN/GaN heterointerface induced by the compressive strain in the InyGa1-yN channel, which effectively suppresses the parallel conductivity originating from the thermal excitation in the underlying GaN layer at high temperatures.
Keywords:  temperature dependence      Hall mobility      parallel conductivity  
Received:  22 November 2010      Revised:  07 January 2011      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60906041, 60736033, 60890193, and 10774001).

Cite this article: 

Song Jie (宋杰), Xu Fu-Jun (许福军), Huang Cheng-Cheng (黄呈橙), Lin Fang (林芳), Wang Xin-Qiang (王新强), Yang Zhi-Jian (杨志坚), Shen Bo (沈波) Different temperature dependence of carrier transport properties between AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures 2011 Chin. Phys. B 20 057305

[1] Simin G, Hu X, Tarakji A, Zhang J, Koudymov A, Saygi S, Yang J, Khan M A, Shur M S and Gaska R 2001 Jpn. J. Appl. Phys. 40 L1142
[2] Pala N, Rumyantsev S, Shur M, Gaska R, Hu X, Yang J, Simin G and Khan M A 2003 Solid State Electron. 47 1099
[3] Wang C X, Tsubaki K, Kobayashi N, Makimato T and Maeda N 2004 Appl. Phys. Lett. 84 2313
[4] Okamoto N, Hoshino K, Hara N, Takikawa M and Arakawa Y 2004 J. Cryst. Growth 272 278
[5] Xie J, Leach J H, Ni X, Wu M, Shimada R, Ozgür U and Morkocc H 2007 Appl. Phys. Lett. 91 262102
[6] Lanford W, Kumar V, Schwindt R, Kuliev A, Adesida I, Dabiran A M, Wowchak A M, Chow P P and Lee J W 2004 IEEE Electron. Lett. 40 771
[7] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Dimitrov R, Wittmer L and Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[8] Look D C and Molnar R J 1997 Appl. Phys. Lett. 70 3377
[9] Wang M J, Shen B, Xu F J, Wang Y, Xu J, Huang S, Yang Z J, Qin Z X and Zhang G Y 2007 Appl. Phys. A 88 715
[10] Dziuba Z, Antoszewski J, Dell J M, Faraone L, Kozodoy P, Keller S, Keller B, DenBaars S P and Mishra U K 1997 J. Appl. Phys. 82 2996
[11] Siekacz M, Dybko K, Skierbiszewski C, Knap W, Wasilewski Z, Maude D, Sakowski J, Krupczy'nski W, Nowak G, Bo'ckowski M and Porowski S 2005 Phys. Stat. Sol. (c) 2 1355
[12] Nepal N, Li J, Nakarmi M L, Lin J Y and Jiang H X 2001 Appl. Phys. Lett. 79 2270
[13] Wu J, Walukiewicz W, Shan W, Yu K M, Ager J W, Li S X, Haller E E, Lu H and Schaff W J 2003 J. Appl. Phys. 94 4457
[14] Wu J 2009 J. Appl. Phys. 106 011101
[15] Chen D J, Zhang K X, Tao Y Q, Wu X S, Xu J, Zhang R, Zheng Y D and Shen B 2006 Appl. Phys. Lett. 88 102106 endfootnotesize
[1] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[2] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[3] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[4] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[5] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[6] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[7] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[8] Extraction of temperature dependences of small-signal model parameters in SiGe HBT HICUM model
Ya-Bin Sun(孙亚宾), Jun Fu(付军), Yu-Dong Wang(王玉东), Wei Zhou(周卫), Wei Zhang(张伟), and Zhi-Hong Liu(刘志弘). Chin. Phys. B, 2016, 25(4): 048501.
[9] Effect of combined platinum and electron on the temperature dependence of forward voltage in fast recovery diode
Jia Yun-Peng (贾云鹏), Zhao Bao (赵豹), Yang Fei (杨霏), Wu Yu (吴郁), Zhou Xuan (周璇), Li Zhe (李哲), Tan Jian (谭健). Chin. Phys. B, 2015, 24(12): 126104.
[10] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[11] Temperature dependence of the photothermal laser cooling efficiency for a micro-cantilever
Ding Li-Ping (丁丽萍), Mao Tian-Hua (毛添华), Fu Hao (付号), Cao Geng-Yu (曹更玉). Chin. Phys. B, 2014, 23(10): 107801.
[12] Temperature dependence of single event transient in 90-nm CMOS dual-well and triple-well NMOSFETs
Li Da-Wei (李达维), Qin Jun-Rui (秦军瑞), Chen Shu-Ming (陈书明). Chin. Phys. B, 2013, 22(2): 029401.
[13] Parasitic bipolar amplification in single event transient and its temperature dependence
Liu Zheng (刘征), Chen Shu-Ming (陈书明), Chen Jian-Jun (陈建军), Qin Jun-Rui (秦军瑞), Liu Rong-Rong (刘蓉容). Chin. Phys. B, 2012, 21(9): 099401.
[14] Effect of surface morphology on the electron mobility of epitaxial graphene grown on 0° and 8° Si-terminated 4H-SiC substrates
Li Jia (李佳), Wang Li (王丽), Feng Zhi-Hong (冯志红), Yu Cui (蔚翠), Liu Qing-Bin (刘庆彬), Dun Shao-Bo (敦少博), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2012, 21(9): 097304.
[15] Temperature and drain bias dependence of single event transient in 25-nm FinFET technology
Qin Jun-Rui (秦军瑞), Chen Shu-Ming (陈书明), Li Da-Wei (李达维), Liang Bin (梁斌), Liu Bi-Wei (刘必慰 ). Chin. Phys. B, 2012, 21(8): 089401.
No Suggested Reading articles found!